Original Article / Оригинални рад

Dragana Tegeltija1,2,*, Aleksandra Lovrenski1,2, Tijana Vasiljević1,3, Siniša Maksimović2

Association between EGFR mutation status, clinicopathological characteristics and TTF-1 expression in lung adenocarcinoma – a single center study

Удруженост мутационог статуса EGFR са клиничкопатолошким характеристикама и TTF-1 експресијом у аденокарциному плућа – студија једног центра

1University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia;
2Institute for Lung Diseases of Vojvodina, Sremska Kamenica, Serbia;
3Oncology Institute of Vojvodina, Sremska Kamenica, Serbia

Received: December 14, 2018
Revised: April 25, 2020
Accepted: November 16, 2020
Online First: November 20, 2020
DOI: https://doi.org/10.2298/SARH181214111T

*Accepted papers are articles in press that have gone through due peer review process and have been accepted for publication by the Editorial Board of the Serbian Archives of Medicine. They have not yet been copy-edited and/or formatted in the publication house style, and the text may be changed before the final publication.

Although accepted papers do not yet have all the accompanying bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: the author’s last name and initial of the first name, article title, journal title, online first publication month and year, and the DOI; e.g.: Petrović P, Jovanović J. The title of the article. Srp Arh Celok Lek. Online First, February 2017.

When the final article is assigned to volumes/issues of the journal, the Article in Press version will be removed and the final version will appear in the associated published volumes/issues of the journal. The date the article was made available online first will be carried over.

*Correspondence to:
Dragana TEGELTIJA
Hajduk Veljkova 3, 21000 Novi Sad, Serbia
E-mail: dragana.tegeltija@mf.uns.ac.rs; tegeltijadragana@gmail.com
Association between EGFR mutation status, clinicopathological characteristics and TTF-1 expression in lung adenocarcinoma – a single center study

Удруженост мутационог статуса EGFR са клиничкопатолошким характеристикама и TTF-1 експресијом у аденокарциному плућа – студија једног центра

INTRODUCTION

Epidermal growth factor receptor (EGFR) consists of 486 amino acids and 170 kDa in size. It is part of the ErbB family of structurally related receptor tyrosine kinases: EGFR (HER1, ErbB1), HER2 (Neu, ErbB2), HER3 (ErbB3) and HER4 (ErbB4) which are involved...
in signal transduction pathways and play a key role in the regulation of cellular proliferation and apoptosis. Molecular analysis of the mutation status for EGFR is critical for treatment of tyrosine kinase inhibitors (TKIs), which show improved progression-free survival (PFS) and overall survival in patients with ADs which is second most frequent histological type of lung cancer found in surgically treated lung cancer patients in Serbia [1, 2, 3]. According to international guidelines, conventional identification of EGFR genotype requires tissue/cytologic samples (Ti/Cy), but in last five years EGFR testing can be performed by analysis of circulating-free tumor DNA (cfDNA) in peripheral blood samples. EGFR mutations are more frequent in tumors with ADs histology, in never-smokers or light smokers, in female, and in patients with East Asian ethnicities. The most frequent EGFR mutations are in-frame deletions of exon 19 and the exon 21 L858R mutation [4, 5]. Previous investigations have demonstrated that EGFR gene mutation is mainly detected in patients with lepidic (LP), papillary (PAP), micropapillary (MPP) and acinar (ACN) types, whereas the mutation rate is extremely low in patients with solid (SOL) histological type [6, 7, 8, 9].

Thyroid transcription factor 1 (TTF-1), is a homeodomain nuclear protein that belongs to the NK2 family of transcription factor. TTF1 is recommended as one of a panel of lineage-specific immunohistochemical markers for ADs differentiation and may modulate lung cancer biology. Clinicopathologic features such as age, gender, and smoking status, histological type and pathological stage were similar between TTF-1 positive and TTF-1 negative tumors. TTF-1 positive tumors have more commonly EGFR mutations, as well as better response to EGFR TKIs comparing to TTF-1 negative tumors, but TTF-1 negativity should not be the exclusion criteria for EGFR testing [10, 11, 12].

In the present study, we investigated the association between EGFR mutation status, clinicopathological characteristics and TTF-1 expression in lung adenocarcinoma.

METHODS

The surgical samples of 142 patients with lung ADs admitted to the Institute for Lung Diseases of Vojvodina (Sremska Kamenica, Serbia) between January, 2010. and December, 2015. were retrospectively analyzed.
Clinicopathological parameters including age, gender, smoking history, pathological stage and histological type were recorded. The histological classification was done based on 2015 WHO classification system and all samples were divided in five groups (ACN, PAP, MPP, LP or SOL).

142 surgical samples were fixed in 10% formalin, embedded in paraffin, cut on four-micron-thick sections and stained with routine H&E staining. Eighty-three of them were deparaffinized and incubated in a citrate buffer (10 mM sodium-citrate monohydrate, pH 6.5) at 120°C for 20 min in an autoclave. The sections were reacted for 1 hour with antibody of TTF-1 (monoclonal antibody, Denmark DAKO products) and then incubated with a commercially available detection kit (DAKO EnVision Plus-HRP, Dako, Glostrup, Denmark) following the manufacturer’s instructions. Positive and negative controls were used as appropriate. TTF-1 expression was rendered semiquantitatively on a score from 0 to 2. Tumors were scored according to TTF-1 expression into following scores: 0 (lack of expression), score 1 (< 50%) and score 2 (more ≥ 50%) based on the percentage of positively stained tumor cells of any intensity.

The EGFR mutations (in exons 18, 19, 20, and 21) was done with the Cobas EGFR Mutation Test (Roche, Basel, Switzerland) “Real time PCR”. The Cobas Sample Preparation Kit (Roche, Basel, Switzerland) was used for the sample preparation and DNA extraction. Automatic amplification and detection were done on the Cobas z 480 Analyzer (Roche, Basel, Switzerland).

Statistical analysis

Pearson’s χ^2 test and Fisher’s exact test were used to compare frequencies of clinicopathological variables. P-values of < 0.05 were considered significant. All analyses were performed using SPSS version 20 (SPSS, Chicago, IL, USA).

The study was done in accord with standards of the institutional committee on ethics.
RESULTS

One hundred and forty-two patients diagnosed with infiltrative ADs (Figure 1) which had been surgically resected were included in this study. The median age of all patients was 61.6 years (ranging from 42 to 82). The majority of patients were males (78; 54.9%), and 13 of 142 (9.2%) had no-smoking history (Table 1).

Most common histological types were ACN (68; 47.9%) and SOL (55; 38.7%) with most frequent pathological stage IIA according to the 7th TNM classification system (Table 2).

Sixty-three (75.9%) of the 83 cases of lung ADs showed TTF-1 expression levels corresponding to score 2 (Figure 2), 3 (7.2%) to score 1 and 14 (16.9%) cases lack of TTF-1 expression (Table 3).

EGFR mutations in exons 18, exon 19, exon 20 or exon 21 were examined in 142 cases of lung ADs. The overall frequency of EGFR mutation was 7% (10 of 142). Five cases had an in-frame deletion in the exon 19, three cases had exon 21 substitutions (L858R, L861Q) and two cases exon 20 insertions. Multiple mutations (≥ 2) and other EGFR mutations were not observed (Figure 3).

Three male and seven female patients harbored EGFR mutation (P = 0.114). Three patients with EGFR gene mutation were non-smokers. (p = 0.05) (Table 1). The EGFR mutations were found in eight ADs with ACN histological type and two with SOL histological type (p = 0.32). Other histological types were without EGFR mutations. Pathological stage with EGFR mutations were: IIB, IIA and IB (4, 3 and 1; p = 0.46) (Table 2). Association between TTF-1 protein expression and EGFR mutation status is shown in Table 3. Three cases with TTF-1 expression (score 2) had EGFR mutations. Also, EGFR mutations were present in two cases lack of TTF-1 expression (score 0) (Table 3).
DISCUSSION

In recent years, significant progression has been obtained in the molecular biological research of lung ADs with EGFR mutation. EGFR mutation is a protein on cell surface with intracellular tyrosine kinase (TK) activity due to targetable activating mutations. These tumors are susceptible to TKIs such as gefitinib, erlotinib, or afatinib. [9]

Ti/Cy samples are mostly obtained by sampling of primary tumor or metastatic lymph node. The median EGFR test turnaround time for Ti/Cy samples was 11 days for Europe and 8 days for Japan. When tumor samples are unavailable, cfDNA is a feasible sample for EGFR mutation analysis because overall concordance of EGFR mutation status between matched Ti/Cy and plasma samples was 89%. It is important to conduct mutation testing in specialized laboratories, using sensitive mutation testing methods to ensure accuracy of results. In Europe 43 laboratories perform the Ti/Cy testing, while in five laboratories both analysis of Ti/Cy and cfDNA in peripheral blood samples are performed [11, 13, 14]. At our institution, both methods of EGFR mutation testing have been implemented in clinical practice three years ago.

Since CT is routinely used in lung cancer diagnosis, as CT imaging is more readily available than biopsies, many researchers proposed analysis CT imaging for predicting EGFR mutations [15]. The presence of emphysema or airway abnormality predicts a wild type status of EGFR while the presence of any ground glass component indicates EGFR mutations [16]. Recently, the deep learning model (DLM) provides a non-invasive and easy-to-use method for prediction of EGFR mutation status. Wang et al. retrospectively collected data from 844 lung ADs patients with pre-operative CT images, EGFR mutation and clinical information from two hospitals. The DL score demonstrated significant differences in EGFR-mutant and EGFR-wild type tumors (p < 0.001) [17].

ADs are the most common histological subtypes of lung carcinoma, and it has been shown that is associated with activating mutations in the EGFR gene in 15% of European and 47% of Japanese patients [18]. The most common EGFR mutations include exon 19 deletion. Other recurrent mutations, in exon 18-point mutations in position G719, in exon 21 L861Q mutation, and in-frame exon 19 insertions are rare (3%; 2% and < 1%) [19, 20, 21, 22]. In our
study EGFR mutations were detected in 10 of 142 (7%) cases ADs, five of ten were deletion in exon 19, similar with results in other studies.

The association between EGFR mutations with patient’s age, gender and smoking status have been demonstrated in numerous studies with a variety of cases [23, 24, 25, 26]. In this investigation, EGFR gene mutation was mainly observed in patients aged > 60 years, which is consistent with previous findings.

Mutations were found more frequently in women (69.7%), in patients who had never smoked (66.6%), and in those with adenocarcinomas (80.9%) (p < 0.001) [22, 26]. Contrary to these results, in our study EGFR mutations were more frequently detected in smokers (7 of 10 cases). These differences are probably the result of a different lifestyle.

Many authors have studied the association between EGFR mutations and histologic type of Ads and TTF-1 expression, as well as pathologic stage of the disease [27, 28, 29, 30]. Villa et al. reported that the most common histologic type seen in the EGFR-mutant–positive ADs was LP (44%) [31]. Contrary to these results, Zhang et al. reported that ACN type most frequently correlated with EGFR mutation, which is consistent with our results [22]. In our study, ACN (7/10) and SOL (3/10) type were independent predictors of EGFR mutation. EGFR-mutated ADs may develop through a distinct carcinogenetic pathway, in which the MPP element may play an important role in promoting progression and has prognostic value [32]. In our results MPP histologic type was detected in 4 of 142 (2.8%) cases with wild type EGFR ADs. Pi et al. showed that EGFR mutation was significantly higher in stage IA than in stage IIB (p = 0.002) [27]. In our study, there was no difference in EGFR mutations between stage IA and stage IIB, probably because it was single center study with small number of cases.

TTF-1 is expressed in the distal bronchial epithelium, including type II alveolar epithelial cells and terminal respiratory epithelial cells, as well as in lung carcinoma: frequently in small cell carcinoma and in ADs [10]. Sixty-six of the 83 cases (79.5%) of lung ADs included in this study showed score 2 (75.9%) of TTF-1 expression, while 3 (7.2%) showed score 1. These results suggest that lung ADs expressed TTF-1. In recent years, many studies have mentioned the association between TTF-1 expression and EGFR mutations [10, 12, 32, 33]. The TTF1 positivity staining were strongly correlated with the presence of EGFR
mutations (p < 0.001) and TTF-1 negativity to be a good predictor of EGFR wt mutations [32]. The results of the Svaton et al. study suggested that patients with EGRF wt lung ADs and lack of TTF-1 expression to have significantly lower PFS and OS, and TTF1 expression may be useful predictors of TKIs efficacy in patients with EGFR wt lung ADs [29]. The patients, TTF-1 positive or negative ADs, could benefit from the first-line chemotherapy [30]. Therefore, lack of TTF-1 expression should not exclude patients from EGFR testing.

To our knowledge, this is the first study which investigate association between EGFR mutation and TTF-1 expression in Serbia. Among tumors in which immunohistochemical analysis to TTF-1 antibody was performed (n = 83), EGFR mutations were detected in five cases: in three tumors with score 2 of TTF-1 expression and in two tumors lack of TTF-1 expression (Table 3).

CONCLUSION

The results of this study demonstrate that the presence of EGFR mutations is associated with some clinical characteristics and histologic type of AD, but not with TTF-1 expression.

Conflict of interest: None declared.
REFERENCES

DOI: https://doi.org/10.2298/SARH181214111TF

Figure 1. Acinic type adenocarcinoma (H&E, 10×)
Figure 2. TTF-1-positive expression in adenocarcinoma cells (IHC, 10×)
Table 1. Patients characteristics and epidermal growth factor receptor (EGFR) mutation status

<table>
<thead>
<tr>
<th>Clinical characteristics</th>
<th>Frequency</th>
<th>EGFR status n (%)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>positive</td>
<td>negative</td>
</tr>
<tr>
<td>Total</td>
<td>142</td>
<td>10 (7)</td>
<td>132 (93)</td>
</tr>
<tr>
<td>Age, years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>61.6</td>
<td>65.5</td>
<td>46–82</td>
</tr>
<tr>
<td>Range</td>
<td>42–82</td>
<td></td>
<td>61.3</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>78 (54.9)</td>
<td>3 (2.1)</td>
<td>75 (52.8)</td>
</tr>
<tr>
<td>Female</td>
<td>64 (45.1)</td>
<td>7 (4.9)</td>
<td>57 (40.1)</td>
</tr>
<tr>
<td>Smoking history</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>13 (9.2)</td>
<td>3 (2.1)</td>
<td>10 (7)</td>
</tr>
<tr>
<td>Former/current</td>
<td>129 (90.8)</td>
<td>7 (4.9)</td>
<td>122 (85.9)</td>
</tr>
</tbody>
</table>
Table 2. Histopathological characteristics of adenocarcinomas and epidermal growth factor receptor mutation status

<table>
<thead>
<tr>
<th>Histopathological characteristics</th>
<th>Frequency</th>
<th>EGFR status, n (%)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>positive</td>
<td>negative</td>
</tr>
<tr>
<td>Histological type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP</td>
<td>6 (4.2)</td>
<td>0 (0.0)</td>
<td>6 (4.2)</td>
</tr>
<tr>
<td>ACN</td>
<td>68 (47.9)</td>
<td>8 (5.6)</td>
<td>60 (42.3)</td>
</tr>
<tr>
<td>PAP</td>
<td>9 (6.3)</td>
<td>0 (0.0)</td>
<td>9 (6.3)</td>
</tr>
<tr>
<td>SOL</td>
<td>55 (38.7)</td>
<td>2 (1.4)</td>
<td>53 (37.3)</td>
</tr>
<tr>
<td>MPP</td>
<td>4 (2.8)</td>
<td>0 (0.0)</td>
<td>4 (2.8)</td>
</tr>
<tr>
<td>Stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IA</td>
<td>32 (22.5)</td>
<td>3 (2.1)</td>
<td>29 (20.4)</td>
</tr>
<tr>
<td>IB</td>
<td>24 (16.9)</td>
<td>1 (0.7)</td>
<td>23 (16.2)</td>
</tr>
<tr>
<td>IIA</td>
<td>35 (24.6)</td>
<td>2 (1.4)</td>
<td>33 (23.2)</td>
</tr>
<tr>
<td>IIB</td>
<td>28 (19.7)</td>
<td>4 (2.8)</td>
<td>24 (16.9)</td>
</tr>
<tr>
<td>IIIA</td>
<td>21 (14.8)</td>
<td>0 (0.0)</td>
<td>21 (14.8)</td>
</tr>
<tr>
<td>IV</td>
<td>2 (1.4)</td>
<td>0 (0.0)</td>
<td>2 (1.4)</td>
</tr>
<tr>
<td>Total</td>
<td>142 (100)</td>
<td>10 (7)</td>
<td>132 (93)</td>
</tr>
</tbody>
</table>

EFGR – epidermal growth factor receptor; LP – lepidic; PAP – papillary; MPP – micropapillary; SOL – solid; ACN – acinar
Table 3. Association between TTF-1 expression and epidermal growth factor receptor mutations

<table>
<thead>
<tr>
<th>TTF-1 expression</th>
<th>Frequency</th>
<th>EGFR status, n (%)</th>
<th>positive</th>
<th>negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score 0</td>
<td>14 (16.9)</td>
<td>2 (2.4)</td>
<td>12 (14.5)</td>
<td></td>
</tr>
<tr>
<td>Score 1</td>
<td>3 (7.2)</td>
<td>0 (0)</td>
<td>6 (7.2)</td>
<td></td>
</tr>
<tr>
<td>Score 2</td>
<td>63 (75.9)</td>
<td>3 (3.6)</td>
<td>60 (72.3)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>83 (100)</td>
<td>5 (6)</td>
<td>78 (94)</td>
<td></td>
</tr>
</tbody>
</table>

EFGR – epidermal growth factor receptor
Figure 3. The proportion of epidermal growth factor receptor mutations