Focal brain lesions as a consequence of an obscure neurosurgical treatment in drug-addicted patient

Фокалне лезије мозга као последица нејасног неурохируршког третмана код интравенског корисника психоактивних супстанци

Ivana Stojačić 1,2,†, Dalibor Ilić 1, Mirela Juković 1,2, Miloš Vujanović 2,3, Ivana Čana 4, Viktor Till 1,2

Focal brain lesions as a consequence of an obscure neurosurgical treatment in drug-addicted patient

Фокалне лезије мозга као последица нејасног неурохируршког третмана код интравенског корисника психоактивних супстанци

1Clinical Center of Vojvodina, Center for Radiology, Novi Sad, Serbia
2University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia;
3Clinical Center of Vojvodina, Clinic for Infectious Diseases, Novi Sad, Serbia;
4Institute for Pulmonary Diseases of Vojvodina, Sremska Kamenica, Serbia

Received: July 6, 2019
Revised: September 18, 2019
Accepted: September 27, 2019
Online First: October 1, 2019
DOI: https://doi.org/10.2298/SARH190706109S

*Accepted papers are articles in press that have gone through due peer review process and have been accepted for publication by the Editorial Board of the Serbian Archives of Medicine. They have not yet been copy-edited and/or formatted in the publication house style, and the text may be changed before the final publication.

Although accepted papers do not yet have all the accompanying bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: the author’s last name and initial of the first name, article title, journal title, online first publication month and year, and the DOI; e.g.: Petrović P, Jovanović J. The title of the article. Srp Arh Celok Lek. Online First, February 2017.

When the final article is assigned to volumes/issues of the journal, the Article in Press version will be removed and the final version will appear in the associated published volumes/issues of the journal. The date the article was made available online first will be carried over.

†Correspondence to:
Ivana STOJIĆ
Hajduk Veljkova 1, 21137 Novi Sad, Serbia
E-mail: ivana.stojic2901@gmail.com
Focal brain lesions as a consequence of an obscure neurosurgical treatment in drug-addicted patient

Фокалне лезије мозга као последица нејасног неурохируршког третмана код интравенског корисника психоактивних супстанци

SUMMARY

Introduction Infectious or non-infectious noxae may occur in drug addicted patients who have clinical presentation of meningeal syndrome with a spectrum of possible complications such as a diffuse or focal brain lesions. The aim of this report is to present a rare case of 37-years old drug-addicted male patient, initially suspected of mycosis of the central nervous system, but computed tomography (CT) and magnetic resonance imaging (MRI) showed the signs of an invasive neurological operation that the patient underwent during the treatment of drug addiction.

Case report A 37-year-old male patient was hospitalized in the Clinic for Infectious Diseases, Clinical Center of Vojvodina, with a meningeal syndrome, initially suspected of mycosis of the central nervous system. He was diagnosed in the Center for Radiology. Neuroimaging CT and MRI were used in order to prove the presence or absence of brain infection. These diagnostic procedures ruled out the presence of brain infection, but opened the questions about the type of neurological treatment which was performed out of legal institution, due to a presence of craniotomy and focal glial brain lesions in the frontal lobes.

Conclusion In drug-addicted patients; meningeal syndrome could be connected with diffuse or focal brain infections. Together with laboratory and clinical analysis, imaging methods contribute to the decision making and optimal treatment of patients. In our case, CT and MRI made a significant contribution in the detection of the focal brain lesions and clarification of their etiology.

Keywords: magnetic resonance imaging; tomography; X-ray computed; substance-related disorders; neuroimaging; craniotomy; nervous system

САЖЕТАК

Увод У основи менингеалног синдрома код интравенских корисника психоактивних супстанци (ИКПС) су диференцијално-дијагностичка размишљања иду у правцу инфективног или неинфективног порекла, а са могућим компликацијама као што су дифузне или фокалне лезије мозга. Циљ рада је приказ случаја 37-годишњег ИКПС са иницијално постављеном сумњом на микозу централног нервног система (ЦНС), где су компјутеризоване томографија (ЦТ) и магнетна резонансна (МР) показала знакове неурохируршке операције којој се пацијент подвргао у циљу лечења зависности.

Приказ болесника Мушкарац стар 37 година причињен је на Клинику за инфективне болести Клиничког центра Војводине са знацима менингеалног синдрома. Прво се сумњало на микозу ЦНС-а, а ЦТ и МР су се спровели са циљом да се види да ли постоји инфекција. Дијагностичке процедуре су исклjuчиле постојање инфекције али се отворило ново питање о врсти неурохируршке процедуре, с обзиром на постојање краниотомије и фокалних глијалних лезија у фронталним режњевима, која је спроведена ван легалне институције.

Закључак Код интравенских корисника психоактивних супстанци менингеални синдром може бити повезан са дифузним или фокалним инфекцијама мозга. Заједно са лабораторијским и клиничким анализама, сличне методе допринесе доношењу одлука и оптималном третману пацијената. У нашем случају, ЦТ и МР су дали значајан допринос у откривању фокалних лезија мозга и разјашњавању њихове етиологије.

Кључне речи: магнетна резонанца; компјутеризована томографија; поремећаји повезани са уносом психоактивних супстанци; неуроимјинг; краниотомија; нервни систем

INTRODUCTION

Intravenous (IV) drug addicts are prone to various blood-borne infectious diseases. Most common are human immunodeficiency virus (HIV) and Hepatitis B and C infections [1]. Due to a high coincidence of IV drug use with HIV, malnutrition, and immunodeficiency, we used laboratory tests, serological and molecular biological tests to differentiate these
conditions. IV addicts can suffer from numerous infectious and non-infectious diseases of the central nervous system (CNS). Patients with HIV develop neurological complications in 40-80% of cases [2]. These complications arise from opportunist infections, tumors or HIV encephalitis [2, 3]. They are more often caused by bacteria and fungi than by viruses [4]. These diseases can have a clinical presentation of meningeal syndrome with a spectrum of possible complications such as diffuse or focal brain lesions [4, 5]. Unexplained and constant headaches in IV drug addicts should raise suspicion of intracerebral abscess along with other life-threatening pathologies [6]. Neuroimaging methods such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are of crucial importance in setting diagnose of parenchymal brain lesions.

The objective of this report is to present a rare case of 37-years old drug-addicted male patient, initially suspected of mycosis of the central nervous system, but after both CT and MRI have been done, it showed the signs of an invasive neurosurgical operation that the patient underwent during the treatment of drug addiction.

This study was conducted in accordance with the Helsinki Declaration and Guidelines for Good Clinical Practice and was approved by the Ethics Committee of the Faculty of Medicine, University of Novi Sad.

CASE REPORT

A 37-year-old intravenous male patient, drug addicted for 15 years, came to the emergency department complaining of photophobia, vomiting and extreme headaches – signs of the meningeal syndrome. The patient was disoriented and uncooperative thus medical history was difficult to obtain. He still used heroin from time to time, last time was 3-4 weeks before admission. He said that he did not have any recent viral or bacterial infection nor loss of body mass. Laboratory analysis showed HCV positive infections, but HIV status of patient was unknown. Clinical examination indicated that patient was afebrile, somnolent, with old scars on both sides of the frontoparietal scalp. Neurological examination showed that the right pupil was slightly more dilated, meningeal signs were negative and deep tendon reflexes on lower extremities were brisker than normally. Other internal and neurological findings were without a coarse outburst. In laboratory findings, slightly elevated inflammation parameters were recorded-sedimentation rate (SE) 38/70 mm/h, C-reactive protein (CRP)
30.1 mg/l (ref. 0.0–5.0), fibrinogen was in normal range, as well as all the other biochemical blood and urine analysis. Acute bacterial and fungal nasopharyngeal infections were excluded (bacterial nasal and pharyngeal cultures, as well as fungal cultures were sterile). Hemoculture, bacteriological and fungal findings were negative. Serological testing for Toxoplasmosis (ELISA method) was negative. Chest X-ray, abdominal and pelvic ultrasonography were made during hospitalization and they were without any pathological findings. Initially parenteral antibiotics, antimycotics (aminopenicillin, vancomycin, metronidazole, fluconazole), antiedematous therapy (Mannitol), nonspecific hepatoprotective drug (Slimarin caps), infusion and symptomatic (analgesic) therapy were included. The patient remained afebrile all the time and his headaches had a tendency to regression. Lumbar puncture showed normal cerebrospinal fluid. During his hospitalization head CT and MRI were done.

Non-enhanced head CT was performed. The contrast was not applied because the peripheral vein could not be accessed. It showed focal hypodense brain lesions in both frontal lobes. An infection of CNS was firstly suspected but in differential diagnostics malignant tumors could not be excluded. On the bone window, bone defects from previous trepanation were seen on both sides of frontal bones (Figure 1). Acute pansinusitis was detected, most prominently in the right aspect of the frontal sinus, as well as sinusitis of the right maxillary sinus which was described as mycotic (fungal ball) sinusitis.

Brain MRI and TOF angiography showed oval T1 weighted (T1W) hypo/T2 weighted (T2W) hyperintense zones (Figure 2) with marginal T2W/FLAIR hyperintensity, without restriction of water molecules diffusion, without postcontrast enhancements frontally parasagittally bilaterally and with no pathological signal on proton density. Symmetrically from these zones throughout the postoperative skull defects there were linear T2W/FLAIR hyperintensities that suit gliosis. These findings are in the first place fields of encephalomalacia and gliosis due to a nonstandard neurosurgical procedure. Infectious, malignant, and inflammatory processes were excluded with great certainty.

Just after we presented our results to the patient, he revealed that he underwent a neurosurgical procedure in order to treat his addiction, but he did not have any medical documents to prove that.
DISCUSSION

A persistent headache in IV drug users imposes consideration of infectious complications of the CNS [6]. An afebrile state with normal or slightly elevated inflammatory parameters (leukocytosis, sedimentation, C reactive protein) do not exclude infection of the CNS [7]. The type of narcotics, route and length of application significantly affect the etiology, localization, and the form of CNS infection [6]. The severe headache which our patient had could be prescribed to acute pansinusitis detected on CT since we excluded CNS infections.

Focal brain infections in IV drug addicts are among possible complications and are usually caused by *Staphylococcus aureus, Streptococcus spp*, and *Cryptococcus spp*. [6, 8]. Bacterial sinusitis can also be the source of meningitis, cerebritis and focal parenchymal lesions of the CNS[9]. Given the suspicion of the fungal etiology of focal brain lesions in CNS, we firstly suspected Cryptococcus neoformans, which is the most common causative agent of focal brain lesions. But after a non-enhanced CT was done, it made a huge reversal in our diagnosis. We found bone defects on both sides of the frontal bones, and although they could have been caused by a fungus (fungal osteomyelitis), these holes looked like trepanation defects. These facts opened a question about the type of non-documented neurosurgical treatment which was performed out of a legal institution, due to the presence of a craniotomy. Stereotacticneurosurgical procedure was initially performed for treating psychiatric complaints[10]. It later extended and was used as a treatment for pain and movement disorders [11]. A recent research has come to the fact that it can be very useful for patients with an addiction refractored to and for treating Parkinson’s disease as well[12,13]. Nowadays, with the development of deep brain stimulation (DBS), it is mainly used in implanting the intracerebral electrodes [14]. Deep brain stimulation presents an adaptable, adjustable, helpful neurosurgical procedure which delivers electrical pulses to the specific areas in the brain using implanted electrodes [11]. Considering all this, DBS was among our most probable causes, but we had to think of others as well.

Different surgical procedures have been performed to treat drug addiction, but without precise data from large sample and randomized controlled trials concerning possible complications and the efficiency of the treatment [13]. Frontal lobe plays an important role in cognitive, behavioral and emotional processes with significant interactions between mesolimbic and mesocortical circuits, especially in drug -addicted patients[15]. Dopaminergic
dysfunction in neural circuits also plays a specific role in prefrontal and anterior cingulate cortices in drug-addicted patients and these specific areas are the target sites for neurosurgical interventions[12]. Bilateral cingulotomy and DBS are shown to be possible treatments in the therapy of addiction, psychiatric diseases, and essential tremor [16]. For the first time in 1973 Balasubramaniam et al. analyzed the results of 28 addicted patients treated with bilateral stereotaxic cingulotomy with no long-term complications. Later Medvedev et al. in 2003, also investigated characteristics and effect of the cingulotomy treatment in 348 heroin-dependent patients [13, 17, 18]. Until the 2000s in Russia 300 heroin-addicted patients were treated with bilateral cingulotomy. DBS can have adverse events such as infections (1.7%), transient confusions (15.6%), seizures (1.5%) and can lead to death (0–0.4%). Implantation of the electrode, other than minor gliosis, do not cause any other damage to the brain tissue [19].

Brain imaging methods CT and MRI are essential for differential diagnosis and give more information about the types of brain lesions [4, 20]. The significance of radiological imaging modalities in our drug addicted patient, especially MRI, was to show that the bilateral focal lesions in frontal brain regions did not origin from the infections, but were rather a result of an invasive neurosurgical treatment.

In drug-addicted patients; meningeal syndrome could be connected with diffuse or focal brain infections. Together with laboratory and clinical analysis, imaging methods contribute to the decision making and optimal treatment of patients.

Conflict of interest: None declared.
REFERENCES

Figure 1. CT Axial bone window displays a bone defect of the right frontal bones
Figure 2. MRI T2W axial plane sequence - hyperintense zones frontally parasagittally bilaterally