Case Report / Приказ случаја

Amira Peco-Antić¹,†, Biljana Ivelja², Gordana Miloševski-Lomić¹, Dušan Paripović¹, Martin Konrad³

Hypercalciuria caused by CYP24A1 mutation – fourteen years of the patient’s follow-up
Хиперкалциурија изазвана мутацијом CYP24A1: четрнаест година праћења

¹ University Children’s Hospital, Belgrade, Serbia
² Medical Center, Cetinje, Montenegro
³ Department of General Pediatrics, University Hospital Münster, Germany

Received: January 16, 2017
Accepted: February 22, 2017
Online First: March 31, 2017
DOI: 10.2298/SARH170116095P

* Accepted papers are articles in press that have gone through due peer review process and have been accepted for publication by the Editorial Board of the Serbian Archives of Medicine. They have not yet been copy edited and/or formatted in the publication house style, and the text may be changed before the final publication. Although accepted papers do not yet have all the accompanying bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: the author’s last name and initial of the first name, article title, journal title, online first publication month and year, and the DOI; e.g.: Petrović P, Jovanović J. The title of the article. Srp Arh Celok Lek. Online First, February 2017. When the final article is assigned to volumes/issues of the journal, the Article in Press version will be removed and the final version will appear in the associated published volumes/issues of the journal. The date the article was made available online first will be carried over.

† Correspondence to:
Amira PECO-ANTIĆ
University Children’s Hospital, Dr Nike Miljanića 5, 11000 Belgrade, Serbia
E-mail: amirapecoantic@yahoo.com
Hypercalciuria caused by CYP24A1 mutation – fourteen years of the patient’s follow-up

SUMMARY

Introduction Recently, inactivation mutations of CYP24A1, the gene encoding vitamin D 24-hydroxylase, were identified in hypercalciuric nephrolithiasis and nephrocalcinosis.

The aim of this work was to describe the long term follow-up of a patient with hypercalciuric nephrolithiasis caused by CYP24A1 mutations.

Case Outline A male Montenegro patient first presented with microhematuria at the age of 5 years. Hypercalciuria was documented and for some time he was treated by hydrochlorothiazide. After 12 years the patient presented with hypercalcemia, suppressed parathyroid hormone (PTH), hypercalciuria and increased plasma 25-hydroxy vitamin D [25(OH)D3]. The patient denied any vitamin D supplementation and all other causes of hypercalcemia were ruled out. The positive family history for nephrolithiasis (both parents and grandmother) and the similar biochemical abnormalities detected in father and son, pointed to an inherited disorder. A homozygous mutation in CYP24A1 (E143del) was found in patient and his father, while mother is heterozygous. During follow-up of two years the patient underwent four extracorporeal shockwave lithotripsies, he was advised to increase water intake, and to avoid sunlight exposure. At the end of follow-up he was asymptomatic, and his renal ultrasound was normal, as well as his renal function, but hypercalciuria and low PTH levels persisted.

Conclusion Hypervitaminosis D should be considered in children with idiopathic hypercalciuria, nephrolithiasis and nephrocalcinosis of unknown etiology. Recognition of CYP24A1 mutations in these patients may help to decrease the serious consequences by avoiding vitamin D supplements and excessive sun exposure.

Keywords: Hereditary nephrolithiasis, nephrocalcinosis, hypervitaminosis D, idiopathic hypercalcaemia

INTRODUCTION

Metabolic disorders are a common cause of nephrolithiasis in childhood [1]. Of these, the most common is hypercalciuria which is found in 30-50% of the children with stones in the urinary system [2]. Hypercalciuria may be associated with normal, increased or decreased calcium in blood (Table 1). Hypercalcemic hypercalciuria may be found in hyperparathyroidism, but also in long-lasting immobilization, sarcoidosis, malignancy, juvenile idiopathic arthritis, corticosteroid excess, adrenal failure, William’s syndrome and vitamin D hypervitaminosis.
Historically, vitamin D hypervitaminosis was mainly attributed to vitamin D intoxication [3, 4] and/or to an intrinsic hypersensitivity to vitamin D [5]. However, with advancing in molecular examination of vitamin D metabolism our understanding of vitamin D hypervitaminosis significantly improved [6, 7]. Hypersensitivity to vitamin D, which has been observed in earlier studies [4, 5], now may be explained by the existence of a gene mutation leading to defective metabolization of active vitamin D [6]. Indeed, mutations of the vitamin D 24-hydroxylase (CYP24A1) which normally breaks down both 1,25(OH)2D3 and 25(OH)D3 results in excessive formation of 1,25(OH)2D3 [7]. Increased 1,25(OH)2D3 levels cause hypercalcemia due to enhanced intestinal calcium absorption and hypercalciuria, because of reduced parathyroid hormone (PTH) -dependent calcium reabsorption in the distal renal tubule [7]. Affected individuals have hypercalcemia and hypercalciuria due to which they are prone to nephrolithiasis/nephrocalcinosis and consequently renal failure may occur. Being autosomal recessive inherited this genetic disorder often shows familial occurrence with increased risk in siblings who may experience the first clinical signs and diagnosis only in adulthood [8].

It is not rare that nephrolithiasis and nephrocalcinosis caused by CYP24A1 mutations remain unrecognized despite extensive classical evaluation.

The aim of our work is to draw attention to hypercalciuria and nephrolithiasis caused by CYP24A1 gene defects.

<table>
<thead>
<tr>
<th>HEREDITARY HYPERCALCIURIA</th>
<th>ACQUIRED HYPERCALCIURIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normocalcemic hypercalciuria</td>
<td></td>
</tr>
<tr>
<td>Idiopathic</td>
<td>Prematurity</td>
</tr>
<tr>
<td>Dent’s disease</td>
<td>Drugs: diuretics (furosemide, and acetazolamide), anticonvulsant use (topiramate, zonisamide), ketogenic diet</td>
</tr>
<tr>
<td>Antenatal Bartter syndrome</td>
<td></td>
</tr>
<tr>
<td>Familial hypomagnesemia and nephrocalcinosis with hypercalciuria</td>
<td></td>
</tr>
<tr>
<td>Distal renal tubular acidosis</td>
<td></td>
</tr>
<tr>
<td>Hereditary hypophosphatemic rickets with hypercalciuria</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hypocalcemic hypercalciuria</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypoparathyroidism</td>
<td></td>
</tr>
<tr>
<td>Autosomal dominant hypocalcemic hypercalciuria</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hypercalcemic hypercalciuria</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary hyperparathyreoidism (PHPT)</td>
<td></td>
</tr>
<tr>
<td>MEN1 syndrome associated PHPT</td>
<td></td>
</tr>
<tr>
<td>Familial isolated PHPT</td>
<td></td>
</tr>
<tr>
<td>Hyperparathyreoidism 2</td>
<td></td>
</tr>
<tr>
<td>Metaphyseal chondrodysplasia Jansen type</td>
<td></td>
</tr>
<tr>
<td>Inherited hypophosphatasia</td>
<td></td>
</tr>
<tr>
<td>Williams Beuren syndrome</td>
<td></td>
</tr>
<tr>
<td>Vitamin D induced infantile hypercalcemia- CYP24A1 gene mutation</td>
<td></td>
</tr>
</tbody>
</table>
CASE REPORT

We report a male Montenegro patient who had primarily presented with microhematuria due to idiopathic hypercalciuria at 5 years of age. Renal ultrasound was normal, and he was treated by hydrochlorothiazide. After 12 years the patient presented with macrohematuria and left sided renal colic due to nephrolithiasis (Figure 1). He was found to have intermittent borderline hypercalcaemia (serum Ca 2.46-2.66 mmol/l), low level of intact parathyroid hormone (PTH) (<0.26 pmol/l), hypercalciuria (11.6 mmol/24 h) and increased plasma 25-hydroxy vitamin D [25(OH)D3] (137.3 nmol/l). Serum 1,25(OH)2D3 was not measured. The patient denied using vitamin D supplementation, but certainly had a lot of seasonal sunlight exposure due to Mediterranean climate. Serum electrolytes including magnesium and phosphorus were normal as well as serum bicarbonate, urea and creatinine. Twenty-four-hour urine evaluations excluded hyperuricosuria and oxaluria. Also, other causes of hypercalcemia were ruled out. Chemical analysis of stone found calcium oxalate.

During further follow-up of two years he was treated by four courses of extracorporeal shockwave lithotripsy, increased water intake, and he was advised to avoid sunlight exposure. At the end of follow-up he was asymptomatic, and his renal ultrasound was normal, as well as his renal function. The latest biochemical findings were as follows: serum calcium normal (2.34 mmol/l; Ca++ 1.12 mmol/l), intact PTH low (1.37 pmol/l), 25(OH) D3 in the upper normal range (123.5 nmol/l) and increased 24 hour calciuria (8.88 mmol/24 h).

The patient’s family history was positive for kidney stones: in father (at age of 17 years), mother (at age of 35 years) and the paternal grandmother. At the time of this study, renal ultrasound was normal in both parents, but hypercalcemia (2.62 mmol/l), hypercalciuria (12.41 mmol/24h), depressed PTH (1.07 pmol/l) and increased 25(OH) D3 (94.3 nmol/l) were found in father as well as in his son. Familial occurrence of nephrolithiasis pointed-out its inherited occurrence. Using PCR and Sanger sequencing, a homozygous mutation in CYP24A1 (E143del) was found in patient and his father, while mother is heterozygous. The parents declared not to be consanguineous.

Figure 1. Renal ultrasound displaying the patient’s left kidney: hydronephrosis due to stone in proximal part of the left ureter (arrowed).
DISCUSSION

Our patient as well as his father has E143del homozygous mutation in CYP24A1. This mutation, previously described by Schlingmann et al. [9], leads to a complete loss of 25-OH-D3-24-hydroxylase activity that results in persistently increased levels of both 1,25(OH)2D3 and 25 (OH)D3 and the absence of any measurable inactive metabolite. Basal renal and extrarenal CYP24A1 is usually low but is highly induced by its substrate 1,25(OH)2D3.

In regulating the level of vitamin D3, CYP24A1 plays a role in calcium homeostasis and the vitamin D endocrine system. Its expression is highest in the intestine, kidney and the skin where this enzyme acts to remove metabolites of vitamin D [10]. It has been demonstrated that CYP24A1 knockout (–/–) mice suffer from increased sensitivity to exogenous vitamin D intake and approximately half of them die due to severe hypercalcemia [11]. In humans, CYP24A1 mutations can cause idiopathic infantile hypercalcemia (IIH) [12-19], idiopathic hypercalciuria [9], nephrocalcinosis, and possibly reduced bone density [20]. In patients with IIH due to CYP24A1 mutations, even small doses of vitamin D, as prescribed for vitamin D prophylaxis, may provoke symptomatic hypercalcemic crisis which need treatment by acute hemodiafiltration [16]. Increased sensitivity to vitamin D in patients with CYP24A1 mutations has been also documented by seasonal variations of vitamin D and calcium parameters due to sunlight exposure [17, 18]. Calcemia may be influenced also by alimentary factors. Those may explain the intermittent character of hypercalcemia in our patient too as he did not receive any vitamin D supplement. During his first clinical examination at five years of age it was a winter time, and investigation did not reveal hypercalcemia, but only hypercalciuria. Therefore, in patients with idiopathic hypercalciuria, serum calcium level should be monitor carefully throughout life.

Kidney damage may occur in patients with CYP24A1 mutations, because of nephrolithiasis and / or nephrocalcinosis. It has been estimated that the overall frequency of kidney stones due to CYP24A1 deficiency is 4%-20% [20, 21]. However, it probably may be even higher in children as the majority of children with nephrolithiasis have a metabolic background and familial occurrence [1]. Our patient had familial history of nephrolithiasis. His father, who has the identical CYP24A1 mutation and almost the identical biochemical alterations, had kidney stone at adolescent age, but with milder clinical course. It is uncertain just that transient nephrolithiasis in patient’s mother was the consequence of the heterozygous CYP24A1 mutation. Data from literature suggest that most heterozygous CYP24A1 mutation carriers have a normal vitamin D, usually are asymptomatic, but may possibly be at increased risk of nephrolithiasis [22].

Treatment options for CYP24A1 mutation disorders include avoidance of vitamin D supplementation, sunlight exposure and tanning beds and high volume intake, while in severely affected patients, treatment with the cytochrome inhibitor ketoconazole may be beneficial [23].
ACKNOWLEDGMENT

Writing this paper was supported by the Ministry of Education, Science and Technological Development of Republic of Serbia, grant No. 175079.

REFERENCES:
