Case report / Приказ болесника

Ivana Bajkin¹,², Sladana Pejaković¹,², Mia Manojlović¹,², Ivana Vorgučin¹,³, Dragan Tomić Naglić¹,²

Forgotten Cause of Severe Hyponatremia

Занемарени узрок хипонатремије тешког степена

¹University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia;
²Clinical Center of Vojvodina, Clinic for Endocrinology, Diabetes and Metabolic Disorders, Novi Sad, Serbia;
³Institute for Child and Youth Health Care of Vojvodina, Pediatric Clinic, Novi Sad, Serbia

Received: May 7, 2021
Revised: July 19, 2021
Accepted: July 21, 2021
Online First: July 26, 2021
DOI: https://doi.org/10.2298/SARH210507067B

Accepted papers are articles in press that have gone through due peer review process and have been accepted for publication by the Editorial Board of the *Serbian Archives of Medicine*. They have not yet been copy-edited and/or formatted in the publication house style, and the text may be changed before the final publication.

Although accepted papers do not yet have all the accompanying bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: the author’s last name and initial of the first name, article title, journal title, online first publication month and year, and the DOI; e.g.: Petrović P, Jovanović J. The title of the article. Srp Arh Celok Lek. Online First, February 2017.

When the final article is assigned to volumes/issues of the journal, the Article in Press version will be removed and the final version will appear in the associated published volumes/issues of the journal. The date the article was made available online first will be carried over.

*Correspondence to:
Ivana BAJKIN
Clinical Center of Vojvodina, Clinic for Endocrinology, Diabetes and Metabolic Disorders,
Hajduk Veljkova 1-9, 21000 Novi Sad, Serbia,
E-mail: ivana.bajkin@mf.uns.ac.rs
Forgotten Cause of Severe Hyponatremia

Занемарени узрок хипонатремије тешког степени

SUMMARY
Introduction Sheehan syndrome (ShS) is (pan)hypopituitarism because of postpartum pituitary infarction due to massive obstetrical hemorrhage. Enlargement of the pituitary gland, smaller sellar region, disseminated intravascular coagulation (DIC) or autoimmunity are predisposing factors. The absence of lactation after labor and inability to resume the menstrual cycle later are presenting symptoms. Some of patients with Sheehan's syndrome have a sudden onset of severe hypopituitarism immediately after labor, most often in the form of severe hyponatremia. Central adrenal insufficiency is the most usual cause of hyponatremia, although in some cases the syndrome of inappropriate antidiuretic hormone secretion has been also described.

Case outline The female patient, 39-year-old, was admitted to the Intensive Care Unit due to severe hyponatremia with neurological symptoms (Na 103 mmol/L, Cl 72 mmol/L, K 3.7 mmol/L), and absence of lactation. Previously, on the sixth postpartum day, she was admitted to the Obstetrics and Gynecology Clinic due to severe headache, nausea, vomiting, and blurred vision. The symptoms persist from the labor, which was complicated with severe hemmorhage (1000 mL) due to obstetric complications. Treatment began with the 3% hypertonic saline solution with restriction of fluid intake. In regard to panhypopituitarism, replacement therapy with hydrocortisone and levothyroxine was initiated. Diabetes insipidus was excluded. Growth hormone replacement therapy and combination of progesterone and progestogens was started during follow-up.

Conclusion Early diagnosis of Sheehan's syndrome is essential. Pituitary insufficiency in these patients has a great diversity in presentation, that can sometimes result in coma and death.

Keywords: postpartum hemorrhage; Sheehan syndrome; panhypopituitarism
INTRODUCTION

Hyponatremia defined as sodium level < 135 mmol/l is a frequent electrolyte disorder, and it can be found in patients with endocrinopathies [1]. In hospital setting the incidence of hyponatremia is as high as 30% [2, 3]. Most commonly seen endocrinopathies together with euvolemic hyponatremia are Syndrome of inappropriate antidiuretic hormone secretion (SIADH), adrenal insufficiency and hypothyroidism [3]. Sheehan syndrome (ShS) is (pan)hypopituitarism on the grounds of postpartum pituitary infarction due to massive obstetrical hemorrhage. Signs and symptoms of ShS are mild and nonspecific, so the diagnosis can be easily missed or delayed [4]. Nationwide retrospective study in Iceland found the incidence of ShS of 5.1 per 100,000 females, while according to KIMS database (Pfizer international metabolic database) the incidence of ShS was found to be 3.1 in 1034 patients with growth hormone deficiency. Occurrence of ShS in developed countries is estimated to be exceedingly rare due to highly developed obstetrical care [5]. Here we present a case of acute onset of hyponatremia in patient who experienced hemorrhage during labor.

CASE REPORT

A 39-year-old female patient was admitted to hospital 5 days after parturition because of altered sensorium. Five days earlier she had given birth to a healthy newborn, but the labor had been complicated with extensive obstetrical hemorrhage. On admission, the patient was adynamic and confused, with signs of anemia but without signs of obstetrical bleeding. She reported that lactation was not established. She did not have polyuria or polydipsia. Blood was drawn for initial laboratory tests; the results are shown in Table 1. Due to severe overt hyponatremia, she was treated with 3% saline solution and further investigation was indicated. The results of endocrinological tests are shown in Table 2. Endocrinological testing showed panhypopituitarism. Parenteral hydrocortisone was introduced, and after a few days,
levothyroxine was added. All the signs and symptoms of severe hyponatremia resolved after the therapy and did not appear again after the hydrocortisone initiation. Magnetic resonance imaging (MRI) of the pituitary gland was done, and it revealed enlarged pituitary with apoplexy without bleeding (Image 1). On subsequent ambulatory check-ups panhypopituitarism persisted and replacement dose of estrogen and progesterone was given, along with growth hormone therapy initiation. So far, we have been following this patient for three years and panhypopituitarism seems to be definite. She is feeling well and is asymptomatic.

DISCUSSION

ShS can be a life-threatening condition thus making a delay in diagnosis detrimental. It emerges because of extensive postpartum hemorrhage which leads to pituitary hypoperfusion and necrosis [6, 7]. Nowadays ShS diagnosis is rare in developed countries, but in under-developed and developing countries it can be seen more often. With improving obstetrical care, the incidence of ShS is lessening, but more than 40 years ago the prevalence of this condition was around 100-200 per 100000 females [8]. Miljić et al. presented a retrospective study on 260 patients with hypopituitarism treated in their specialized endocrinological unit in a decade, and among those patients 2 had ShS [9]. Due to the rarity of this condition, nowadays in countries with well-developed medical care the data regarding the incidence of ShS is not fully established [4, 8, 10]. Signs and symptoms of ShS are nonspecific and gradual in onset. The time from onset to the diagnosis is 1 month to 27 years [11-13]. Our patient had the abrupt onset of signs and symptoms of severe overt hyponatremia due to central adrenal insufficiency. Earlier reports of deaths due to diminished cortisol level in unrecognized partial or complete hypopituitarism after labor emphasize the need to reintroduce ShS as possible cause of rapid onset of worsening state in females after delivery.
Hyponatremia in ShS is mainly the consequence of central adrenal insufficiency i.e., the lack of cortisol. It is known that SIADH is the most common reason for euvoletic hyponatremia. There are clear diagnostic criteria for SIADH, nevertheless it is not always the case that the central adrenal insufficiency is priorly excluded [17-19]. Further contribution to the severity of hyponatremia comes from hypothyroidism as a part of hypopituitarism in the presented patient. Hyponatremia in isolated hypothyroidism is rare, and mostly the consequence of primary hypothyroidism. Proposed mechanism for the hyponatremia in hypothyroid patients is the elevation of antidiuretic hormone together with mild renal impairment [20-23]. Symptomatic hyponatremia should be urgently solved with intravenous 3% saline solution according to current guidelines, having in mind that too fast elevation of sodium can result in pontine myelinolysis [1, 24, 25, 26]. Timely diagnosis of ShS is needed in order to initiate adequate hormonal supplementation, and the hydrocortisone and levothyroxine are of vital significance.

ShS is a rare condition in developed countries and the significance of the risk it carries might be neglected. Central adrenal insufficiency can be component of ShS, thus contributing to the severity of syndrome. With timely diagnosis and adequate therapy, significant morbidity and, in some cases, mortality might be avoided.

Ethical standards: Written consent for publication of this article obtained from the patient.

Conflict of interest: None declared.
REFERENCES

Table 1. Initial blood results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium (mmol/l)</td>
<td>103</td>
</tr>
<tr>
<td>Potassium (mmol/l)</td>
<td>3.7</td>
</tr>
<tr>
<td>Chlorine (mmol/l)</td>
<td>72</td>
</tr>
<tr>
<td>Hemoglobin (g/l)</td>
<td>105</td>
</tr>
<tr>
<td>RBC ($\times 10^{12}$)</td>
<td>3.7</td>
</tr>
<tr>
<td>WBC ($\times 10^9$)</td>
<td>11.06</td>
</tr>
<tr>
<td>Hematocrit (%)</td>
<td>27.9</td>
</tr>
<tr>
<td>CRP (mg/L)</td>
<td>29.4</td>
</tr>
</tbody>
</table>

RBC – red blood cells; WBC – white blood cells; CRP – C-reactive protein
Table 2. Endocrinological test results

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH (IU/L)</td>
<td>< 0.1</td>
</tr>
<tr>
<td>LH (IU/L)</td>
<td>< 0.5</td>
</tr>
<tr>
<td>PRL (ng/mL)</td>
<td>12.2</td>
</tr>
<tr>
<td>ACTH (pg/mL)</td>
<td>3</td>
</tr>
<tr>
<td>hGH (ng/mL)</td>
<td>0.12</td>
</tr>
<tr>
<td>IGF-1 (ng/mL)</td>
<td>134.8</td>
</tr>
<tr>
<td>Cortisol 8 a.m. (nmol/L)</td>
<td>14.5</td>
</tr>
<tr>
<td>24-hour urine sodium excretion (mmol/day)</td>
<td>83</td>
</tr>
<tr>
<td>Anti-TPO Ab (IU/ml)</td>
<td>1.4</td>
</tr>
<tr>
<td>Anti-Tg Ab (ng/ml)</td>
<td>18.6</td>
</tr>
</tbody>
</table>

FSH – follicle-stimulation hormone; LH – luteinizing hormone; PRL – prolactin; ACTH – adrenocorticotropic hormone; hGH – human growth hormone; IGF-1 – insulin-like growth factor 1; Anti – TPO Ab, – thyroid peroxidase antibody; Anti – Tg Ab – antithyroglobulin antibodies
Figure 1. Enlarged pituitary with apoplexy without bleeding