

СРПСКИ АРХИВ

ЗА ЦЕЛОКУПНО ЛЕКАРСТВО

SERBIAN ARCHIVES

OF MEDICINE

Address: 1 Kraljice Natalije Street, Belgrade 11000, Serbia

+381 11 4092 776, Fax: +381 11 3348 653

E-mail: office@srpskiarhiv.rs, Web address: www.srpskiarhiv.rs

Paper Accepted*

ISSN Online 2406-0895

Original Article / Оригинални рад

Mihailo Ille^{1,2}, Ivan Milošević^{1,2}, Marko Ilić^{1,2}, Slađana Matić^{1,2}, Dejan Tabaković³, Dušan Elbors², Biljana Parapid^{1,4}, Sofija Lugonja^{5,†}

Prognostic model of clinical scores in evaluation of treatment outcome in patients with acute Achilles tendon rupture – surgery vs. immobilization

Прогностички модел клиничких скорова у процени исхода лечења пацијената са акутном руптуром Ахилове тетиве – оперисани и неоперисани

Received: May 17, 2020 Revised: July 1, 2020 Accepted: July 6, 2020 Online First: July 8, 2020

DOI: https://doi.org/10.2298/SARH200517047I

When the final article is assigned to volumes/issues of the journal, the Article in Press version will be removed and the final version will appear in the associated published volumes/issues of the journal. The date the article was made available online first will be carried over.

†Correspondence to:

Sofija LUGONJA

Đorđe Joanović General Hospital, Dr Vase Savića 5, 23000 Zrenjanin, Serbia

E-mail: prolesofija@gmail.com

¹University of Belgrade, Faculty of Medicine, Belgrade, Serbia;

²Clinical Center of Serbia, Clinic for Orthopaedic Surgery and Traumatology, Belgrade, Serbia;

³University of Priština – Kosovska Mitrovica, Faculty of Medicine, Kosovska Mitrovica, Serbia;

⁴Clinical Center of Serbia, Division of Cardiology, Belgrade, Serbia;

⁵Dorđe Joanović General Hospital, Zrenjanin, Serbia

^{*}Accepted papers are articles in press that have gone through due peer review process and have been accepted for publication by the Editorial Board of the *Serbian Archives of Medicine*. They have not yet been copy-edited and/or formatted in the publication house style, and the text may be changed before the final publication.

Although accepted papers do not yet have all the accompanying bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: the author's last name and initial of the first name, article title, journal title, online first publication month and year, and the DOI; e.g.: Petrović P, Jovanović J. The title of the article. Srp Arh Celok Lek. Online First, February 2017.

Prognostic model of clinical scores in evaluation of treatment outcome in patients with acute Achilles tendon rupture – surgery vs. immobilization

Прогностички модел клиничких скорова у процени исхода лечења пацијената са акутном руптуром Ахилове тетиве — оперисани и неоперисани

SUMMARY

Introduction/Objective When choosing the appropriate treatment for Achilles tendon rupture, there may be dilemma in choosing the optimal treatment.

The objective of this study was analysis groups of patients with acute closed Achilles tendon injury, to compare early recovery and functional parameters in relation to treatment and to suggest treatment of first choice.

Methods The prospective study included 80 patients with acute Achilles tendon rupture. The treatment was: surgery or immobilization.

Results There is a difference in the mechanism of injury between surgically and non-surgically treated (p = 0.026). 50 (62.5%) patients were operated and 30 (37.5%) patients were treated with circular plaster. The difference (p = 0.000) between the groups in the duration of treatment, AOFAS score and VAS pain was shown. Patients undergoing surgery in the first two days had better clinical results in terms of ATRS, AOFAS score and VAS pain. Higher satisfaction was higher in younger people (p = 0.036). Patients whose treatment lasted shorter were more satisfied with their status (p = 0.001). ATRS and AOFAS score are higher in patients who are more satisfied with their own status (ATRS p = 0.301; AOFAS score p = 0.001). 78.75% (63/80) of patients were fully functional 6 months after treatment.

Conclusion The therapy of choice in the treatment of acute Achilles tendon rupture is surgical, as surgical treatment is shorter; rehabilitation is faster and shorter, and the total costs associated with treatment and absence from work are lower.

Keywords: Achilles tendon; scores; ATRS; AOFAS score; VAS pain

Сажетак

Увод/Циљ Код избора одговарајућег третмана руптуре Ахилове тетиве понекад могу постојати недоумице у избору оптималне процедуре.

Циљ ове студије је анализа групе пацијената са акутном затвореном повредом Ахилове тетиве; да се упореди рани опоравак и параметри функционалности у односу на третман и предложи лечење првог избора.

Методе Проспективно истраживање обухватило је 80 пацијената са акутном руптуром Ахилове тетиве. Лечење је изведено хируршком интервенцијом или имобилизацијом.

Резултати Постоји разлика механизму повређивања између оперисаних и конзервативно лечених (p = 0.026). Педесет (62,5%) пацијената је оперисано а 30 (37,5%) је лечено циркуларним гипсом без анестезије. Показана је разлика (р = 0,000) између група у дужини трајања лечења, AOFAS score и VAS pain. Боље клиничке резултате у погледу ATRS, AOFAS score и VAS pain имали су пацијенти који су подвргнути операцији у прва два дана. Већа сатисфакција била код млађих (р = 0,036). Пацијенти чији је третман трајао краће били су задовољнији својим статусом (p = 0.001). ATRS и AOFAS score су виши код пацијената који су задовољнији сопственим статусом (ATRS p =0,301; AOFAS score p = 0,001). 78,75% (63/80) пацијената је било у потпуности функционално 6 месеци након лечења.

Закључак Терапија избора у лечењу акутне руптуре Ахилове тетиве је хируршка, јер је хируршко лечење краће; повољнији су услови за бржу и краћу рехабилитацију, а укупни трошкови повезани са лечењем и одсуством са посла су

Кључне речи: Ахилова тетива; скорови; *ATRS*; *AOFAS score*; *VAS pain*

INTRODUCTION

The Achilles tendon is the thickest and strongest tendon in the human body. Rupture of the Achilles tendon accounts for 35% of all acute tendon ruptures [1, 2, 3]. Over a 30-year period, it has been recorded a tenfold increase in the rates of incidence from 18 to 21 per

100,000 inhabitants per year [1, 2, 3]. Acute rupture of the Achilles tendon is not only common in professional athletes, but occurs in 61% of individuals who play informal recreational sports. Bilateral Achilles tendon rupture occurs in about 25–30% of cases [4].

Research shows that Achilles tendon ruptures occur at a rate of 75% for people between the ages of 30 and 40 [3]. It has registered a significant rise in ruptures in the 40 to 59 demographic. And is more common in males, nonobese and obese patients. The ratio of the frequency of acute Achilles tendon rupture between men and women is 3: 1 [1,2,5,6].

Achilles tendon injuries are associated with risk factors ranging from inflammatory and degenerative changes, to the long-term use of corticosteroids, testosterone, growth hormones, and quinolone antibiotics [4,6]. The tendon connects M. triceps surae for calcaneus on the back of the lower leg, and actively plantar stretches the foot and raises the heel and the entire body to the toes. During physical exertion, it exposes her to a large load on stretching, especially with insufficient physical preparation and warm-up.

The weakest part of the Achilles tendon is 2–6 cm above the attachment on the calcaneus; approximately 80% of rupture cases occur here; and a limited portion of the blood supply comes from the tendon. Tendon ruptures are caused by a potent dorsiflexion force applied to calf and/or foot [3].

The clinical picture includes a very strong pain and impossibility of plantar flexion, especially standing on the toes of the injured foot. The diagnosis is made by clinical examination (normally confirmed by a Thompson Test or Palpation test), an ultrasound examination, or by magnetic resonance imaging [1,4,6].

The treatment options for an acute Achilles tendon injury comprises both initial care and further nonsurgical and surgical rehabilitation. Initial care includes the P.R.I.C.E. procedure (Protection, Rest, Ice, Compression, and Elevation). Although identifying treatment is challenging, there are several modalities, from conservative therapy to open surgical reconstruction, available to patients. No matter what the technique is, relatively good, functional outcomes are likely.

Surgical treatment has a lower rate of re-rupture compared to conservative therapy (4% vs. 10%, respectively), and fewer working days, but records higher rates of complication. Minimally invasive percutaneous techniques are an alternative to traditional treatment. And

despite similarly low rates of rerupture and early complications—compared to open surgery—it is accepted that percutaneous techniques with caution because sural nerve lesions are possible [2,6,7].

Surgical treatment, for instance, also involves joining the ends of the tendon with one of several surgical techniques. This method of treatment has several advantages, namely for the anatomical restitution of the tendon and preservation of its length, the reduction of tendon scar tissue at the site of adhesion, and primary healing of the tendon at the optimal time. Some scholars maintain that surgical treatment is superior only if done within the first 48 hours of rupture, while others argue for surgical treatment, best performed within the first week of rupture [8].

Non-operative, conservative treatment, however, involves wearing a knee-length circular cast with the foot in a gravitational equinus and the knee in a slight flexion of about ten degrees, for 6 to 8 weeks. As physicians, we reserve this method of treatment for people who lead a sedative lifestyle and more comorbidities [9] because patients recover more slowly and are at higher risk for Achilles tendon rerupture by up to 50%, perhaps more [6,10]. Although each method of treatment has its advantages and disadvantages, there is no consensus on which option is the best. Surgical treatment appears to reduce the risk of rerupture and give a better functional outcome compared to non-surgical treatment. The percentage of re ruptures in operated patients is between 0 to 11% [7–13].

There are several approaches to surgical techniques for treating a fresh tendon ruptures. The operative approach is posteromedial, recommended with a relief incision in the shape of an elongated letter "S", along the inner edge of the tendon. The posterior medial and posterolateral approaches are less commonly used. They show best results in younger athletes among those with early surgery; among slightly older recreationists, surgery can be avoided by immobilizing the lower leg for 6 to 8 weeks, depending on the severity of the injury [8].

After 12 weeks, the patient should be able to walk without an immobilization boot, have a near complete range of motion, and a certain level of muscle strength. Complete recovery from Achilles tendon rupture surgery takes between 6 and 9 months, depending, a great deal, on the quality of physical therapy experienced by the patient. Research shows that accelerated postoperative protocol, with gradual loading and mobilization of the joint results in better general health and vitality in the 6 months immediately following surgery [14].

The aim of this study was to analyze the population with acute Achilles tendon rupture treated at the Clinic for Orthopedic Surgery and Traumatology KCS in Belgrade over a two-year period. We compared early recovery after acute Achilles tendon rupture in operated and conservatively treated patients to the parameters of functionality relative to treatment, to suggest the treatment of first choice regarding the acute rupture of the Achilles tendon in our population.

METHODS

We designed this research as a prospective study at the Clinic for Orthopedic Surgery and Traumatology KCS in Belgrade, Republic of Serbia from January 2017 to November 2019, in accord with standards of the institutional committee on ethics. The study included 80 patients of both sexes with acute Achilles tendon rupture. All patients had sudden pain in the heel area, difficulty walking and showed an inability to lift the heel. Participation criteria for the study included: patients with acute Achilles tendon rupture within 2 weeks of injury; a palpable gap at the ruptured Achilles tendon and a positive Thompson test; and a B-mode ultrasound that proved an acute Achilles tendon rupture. All patients agreed to complete the questionnaire and provide the data for scores and follow-up over the next 6 months.

Criteria for exclusion from the study were: chronic Achilles tendon rupture, open Achilles tendon rupture, incomplete clinical data, and a history of long-term corticosteroids or quinolones use, those who— although necessary— wished not to have the operation. Patients who lost in follow-up, or were followed for a period less than 6 months, were excluded from the study. Informed consent was not signed for reasons of confidentiality and the confidentiality of data. Instead, informed consent was oral. All operated patients signed surgical and anesthetic consent, which is according to Ethis committee principles.

Questionnaire compiled for research collected data, comprising two parts. The first part was socio-demographic data (age, sex, body weight, comorbidities, occupation, mechanism of injury and lateralization of the injured Achilles tendon), and the second part of the survey contained data used for scores (AOFAS score, ATRS, VAS pain).

The same specialist clinically examined all patients (Palpation test and Thompson test alike). They performed basic laboratory and radiographic diagnostics, after which a decision was made on the method of further treatment.

Surgery was performed under spinal or regional block; anesthesia, under ultrasound control. Non-operative, conservative treatment involved wearing a circular plater cast (immobilization of Paris). All patients continued physical therapy for 6 months. Figure 1 shows steps in surgery.

Modern methods of descriptive (tabulation, graphical representation, measures of central tendency and variability analyzed data; odds ratio, probability) and analytical statistics (distribution normality test Kolmogorov Smirnoff test; chi-square test; t-test; linear and logistic regression; linear correlation; one way ANOVA; ROC analysis) using the software package SPSS 26.0 Statistical significance was set as the value of p < 0.05.

RESULTS

Follow-up of our patients, who were divided into two groups, lasted up to 180 days. The average follow - up of patients who were surgically treated was 177.0 ± 11.00 days, and conservatively treated 175.00 ± 11.5 days, which is without a statistically significant difference (p = 0.437).

It shows the demographic characteristics of patients in Table 1.

Shows data on treatment and functionality of patients with acute Achilles tendon rupture in Table 2.

The Achilles Tendon Total Rupture Score (ATRS) is a composite patient-reported instrument with high reliability, validity and sensitivity that measures symptom-related outcomes and physical activity after treatment inpatients with a total Achilles tendon rupture. The ATRS is self-administered and comprises 10 questions, each valuated from 0 to 10 points. The ATRS ranges from 0 to 100; 100 being the highest score. It tests following in the calf/Achilles tendon/foot: strength; fatigue; stiffness; and pain. Limitations in: daily activities; walking; climbing stairs; jumping and hard physical labor [2,15].

In 1994, The American Orthopedic Foot and Ankle Society® (AOFAS) established rating systems for the ankle-hindfoot, midfoot, hallux, and lesser toes. Originally published in *Foot Ankle International*, the Ankle-Hindfoot Rating System incorporates subject and objective evaluations of the ankle-hindfoot. Patients report their pain; physicians assess alignment. Scores range from 0 to 100, with healthy ankles receiving 100 points. This score may assess the ankle, subtalar, talonavicular, and calcaneocuboid joint levels and may be useful for fractures, arthroplasty, arthrodesis, and instability procedures [16].

Table 3 shows the impact on clinical outcomes over time, typically from the time of Achilles tendon rupture (ATR) and surgery. Patients who received surgical treatment of the Achilles tendon within the first two days of trauma showed better clinical results vis-à-vis ATRS, AOFAS score, and VAS pain. Assessments of satisfaction with treatment and functional status (self-evaluation) proved to show slightly better results in the second group, but without a statistically significant difference between the groups.

We analyzed patient satisfaction in relation to the age of the patient (F = 3.470; p = 0.036). We concluded that the higher prevalence of higher satisfaction was in younger patients. An analysis of the duration of treatment and satisfaction (F = 7,763; p = 0.001) was also performed. Results further concluded that those whose treatment lasted shorter reported greater satisfaction with their status.

The results of ATRS and AOFAS score are higher in patients who are more satisfied with their own status (ATRS p=0.301; AOFAS p=0.001). The AOFAS score is a significant predictive indicator. VAS pain does not show statistical significance in relation to self-evaluation (p=0.070)

Logistic regression analyzed the outcome of treatment aiming at full functionality after through predictive variables that proved significant in statistical analysis. In our series, 78.75% (63/80) of patients were fully functional 6 months after acute Achilles tendon rupture and treatment.

We made predictions using the following variables: length of treatment; ATRS and AOFAS scores that showed a significant association with outcome.

Table 4 shows the prediction of a positive treatment outcome by groups (probability of an excellent outcome).

There is a statistically highly correlation between predicted and observed numbers. Our logistic regression model uses treatment duration in which the ATRS and AOFAS score has a significant predictive value, as (Wald $\chi 2 = 8.406$; p = 0.004) was also analyzed using ROC analysis. Exemplary models for prediction have a value above 0.5 (if less than 0.5 model is no better than random prediction). Predictive values are shown in Figures 2 and 3 and Table 5

DISCUSSION

Despite increased incidences of Achilles tendon rupture, the best strategy for treatment remains a topic of debate. Surgical treatment is preferred options for many authors, as it decreases time needed to go back to work after injury, better quality of life and full functionality.

Knobe et al. compared percutaneous treatment to standard open surgical treatment. The mean age of patients with acute Achilles tendon rupture treated with standard surgery was 44.8 ± 14.1 years. Similar to the average age of our patients who were treated with standard open surgical treatment and conservative, our work is in line with the current state of the literature, which shows an increased trend in the 40 to 59 age group [11]. One domestic study, conducted by Vidić et al. a decade and a half ago, found a preference for the surgical treatment of acute Achilles tendon rupture over a more conservative treatment where the average age of patients was 38.8 ± 2.79 years [17]. Considering these data, we can say that in Serbia there is a tendency to move the age group with the highest frequency of acute Achilles tendon rupture.

According to the current literature, gender distribution shows a higher incidence of acute Achilles tendon ruptures in men. The ratio of the frequency of acute Achilles tendon rupture between men and women in the literature is 3: 1. However, a systematic review of the literature revealed that in Yeoman et al., the ratio of men and women was 1: 1—which is rare. The small number of patients who took part in the study can partly explain this. A review of alternative prospective (Current et al. 2018) and retrospective studies (Wegrzyn et al. 2010 and Mahajan et al. 2009) found results compatible with ours of 2: 1 [3].

Overall, a higher frequency of injury to the left Achilles tendon was noted. This differs from our study, where the frequency of acute rupture of the right Achilles tendon is higher [6, 11, 12].

Grubor et al., analyzed the treatment of acute Achilles tendon rupture, where the frequency of surgical treatment is higher, 81% of patients were operated upon (45% by percutaneous technique; 36%, surgical technique). Our study identifies a statistically significant difference in the treatment of acute Achilles tendon rupture. The paper analyzes the mechanism of Achilles tendon injury, and found that the most common injury observed during recreational sports activities, and in our work in those treated surgically, while the highest frequency of injuries of those conservatively treated in our study, occurred during daily activities which is a statistically significant difference.

On average, all patients treated surgically or conservatively within two days of injury, according to the study, which is approximately the same as our results $(3.82 \pm 1.20 \text{ days})$ for surgically treated and 2.67 ± 14.48 days for patients with immobilization). All patients who underwent an open surgical technique were under spinal anesthesia. In our study, besides spinal anesthesia, local infiltrative anesthesia. There is also a statistically significant difference in our research [4].

The complications of Knobe et al., were present in 34% of cases while in our study they were present in 16.25% of cases; the most common in both studies were paresthesias. Paresthesias can be the result of surgical treatment or diabetes mellitus [11]. Grubor et al., had a similarly low frequency of Achilles tendon ruptures as early complications (one surgically treated; another, conservatively treated). Where 2 reversals of the Achilles tendon registered in the group of patients treated with open surgical treatment, 4 re-ruptures occurred in those conservatively treated [4]. We registered one case of Achilles tendon rerupture in a group of conservatively treated patients. In the study of Vidić et al., they applied a percutaneous surgical treatment in the control group [17].

Much like our study, the average duration of treatment of operated and conservatively treated patients in the study of Grubor et al., and is 9 days in patients openly operated upon. In our country the average duration of treatment is 8.82 ± 1.32 days, and 9.6 weeks in conservatively treated. In our country 69.17 ± 12.84 days [4]. This is important not only

because of the ability to return to work, the impact on one's quality of life, but the impact of both the direct and indirect costs of treatment.

In a ten-year follow-up study post-acute Achilles tendon rupture surgery, Seker et al. estimated the extent of movement and the mean value of dorsiflexion of the foot on the side of the operated Achilles tendon to be 18 degrees (range 10 to 20 degrees). In our study, the highest frequency of patients ranged between 10 and 15 degrees (median 14 degrees). The mean value of plantar flexion in study by Seker et al. was 30 degrees (ranging from 20 to 40 degrees); in ours, the highest frequency was between 20 to 30 degrees (with a median of 28 degrees) in patients operated upon. In the same study, they averaged the AOFAS score 98.5 and the VAS pain was 0 for all patients. We find this to be statistically significant vis-à-vis the range plantar flexion among the conservatively treated.

While the finds of several studies differ from ours, monitoring in the aforementioned research is far longer. This may account for the range of difference among findings [1]. Manegold et al. investigated and followed-up on post percutaneous surgical treatment of acute Achilles tendon rupture complications. They found that where ATRS was 85.4 ± 14.8 , the AOFAS score was 95.3 ± 6.6 and VAS pain 0.6 ± 1.0 , they performed analysis on the impact of the time elapsed, starting the Achilles tendon rupture to surgery on the clinical outcome. Patients operated on in the first two days of rupture showed poorer clinical results in terms of AOFAS score. ATRS and VAS pain showed better clinical results in those operated on in the first two days of rupture. In our study, patients who underwent surgery in the first two days of an Achilles tendon rupture showed better clinical results vis-à-vis their ATRS, AOFAS score, and VAS pain [2].

In Knobe et al., the AOFAS score was compatible with ours and was 90 ± 8 in patients treated with open surgical technique. In the same study, a self-evaluation of patients who underwent open surgical technique was performed, which was 8.40 ± 1.3 on the Liker scale, which is compatible with our results (8.42 ± 0.84 for those operated on in the first two days; 8.78 ± 1.22 for patients operated on in the period from 3 to 7 days) [11].

A prospective study, comparing surgical and non-surgical treatment of acute Achilles tendon rupture followed by a physical rehabilitation protocol, showed acceptable outcomes in both groups of patients. The group of operated patients with a statistically significant Srp Arh Celok Lek 2020 | Online First July 8, 2020 | DOI: https://doi.org/10.2298/SARH200517047I

11

difference in functionality after 6 months compared to conservative patients treated were significantly better.

The present study has certain limitations. The number of patients in the study is relatively small. Larger, more multi-centric study would be recommended to generalize conclusions and give recommendations for good clinical practice.

CONCLUSION

The therapy of choice in the treatment of acute Achilles tendon rupture should be primarily surgical, even if both methods of treatment have given reliable results. We should base the choice of treatment on the patient's characteristics and the physical therapy protocol. Surgical treatment is shorter, conditions for better and shorter rehabilitation are more favorable, and the total costs are related to treatment and duration of the absence from work is lower.

Conflict of interest: None declared.

REFERENCES

- 1. Seker A, Kara A, Armagan R, Oc Y, Varol A, Sezer HB. Reconstruction of neglected achilles tendon ruptures with gastrocnemius flaps: excellent results in long-term follow-up. Arch Orthop Trauma Surg. 2016;136(10):1417–23. doi: 10.1007/s00402-016-2506-9.
- Manegold S, Tsitsilonis S, Schumann J, Gehlen T, Agres AN, Keller J, Gesslein M, Wichlas F. Functional outcome and complication rate after percutaneous suture of fresh Achilles tendon ruptures with the Dresden instrument. J Orthop Traumatol. 2018 Sep 18;19(1):19. doi: 10.1186/s10195-018-0511-1. PMID: 30229505; PMCID: PMC6143488.
- 3. Abubeih H, Khaled M, Saleh WR, Said GZ. Flexor hallucis longus transfer clinical outcome through a single incision for chronic Achilles tendon rupture. Int Orthop. 2018;42(11):2699–704. doi:10.1007/s00264-018-3976-x.
- Grubor P, Grubor M. Treatment of Achilles tendon rupture using different methods. Vojnosanitetski Pregled. 2012 Aug;69(8):663–8. DOI: 10.2298/VSP1208663G
- 5. He ZY, Chai MX, Liu YJ, Zhang XR, Zhang T, Song LX, Ren ZX, Wu XR. Percutaneous Repair Technique for Acute Achilles Tendon Rupture with Assistance of Kirschner Wire. Orthop Surg. 2015 Nov;7(4):359–63. doi: 10.1111/os.12201. PMID: 26791106; PMCID: PMC6583741.
- 6. Zhang H, Liu PZ, Zhang X, Ding C, Cui HC, Ding WB, Wang RK, Wu DJ, Wei Q, Qin S, Wu XL, Tong DK, Wang GC, Tang H, Ji F. A new less invasive surgical technique in the management of acute Achilles tendon rupture through limited-open procedure combined with a single-anchor and "circuit" suture technique. J Orthop Surg Res. 2018 Aug 10;13(1):198. doi: 10.1186/s13018-018-0895-x. PMID: 30097054; PMCID: PMC6086049.
- 7. Lee JK, Kang C, Hwang DS, Kang DH, Lee GS, Hwang JM, Song JH, Lee CW. A comparative study of innovative percutaneous repair and open repair for acute Achilles tendon rupture: Innovative usage of intraoperative ultrasonography. J Orthop Surg (Hong Kong). 2020 Jan-Apr;28(1):2309499020910274. doi: 10.1177/2309499020910274. PubMed PMID: 32186233.
- 8. Carmont MR, Zellers JA, Brorsson A, Nilsson-Helander K, Karlsson J, Grävare Silbernagel K. Age and Tightness of Repair Are Predictors of Heel-Rise Height After Achilles Tendon Rupture. Orthop J Sports Med. 2020 Mar 25;8(3):2325967120909556. doi: 10.1177/2325967120909556. eCollection 2020 Mar. PubMed PMID: 32232072; PubMed Central PMCID: PMC7097876.
- 9. Barfod KW, Hansen MS, Holmich P, Troelsen A, Kristensen MT. Efficacy of early controlled motion of the ankle compared with no motion after non-operative treatment of an acute Achilles tendon rupture: study protocol for a randomized controlled trial. Trials. 2016;17(1):564. Published 2016 Nov 29. doi:10.1186/s13063-016-1697-2
- 10. Hua AY, Westin O, Hamrin Senorski E, et al. Mapping functions in health-related quality of life: mapping from the Achilles Tendon Rupture Score to the EQ-5D. Knee Surg Sports Traumatol Arthrosc. 2018;26(10):3083–3088. doi:10.1007/s00167-018-4954-y
- 11. Knobe M, Gradl G, Klos K, Corsten J, Dienstknecht T, Rath B, et al. Is percutaneous suturing superior to open fibrin gluing in acute Achilles tendon rupture? Int Orthop. 2015;39(3):535–42. doi: 10.1007/s00264-014-2615-4.
- 12. Valkering KP, Aufwerber S, Ranuccio F, Lunini E, Edman G, Ackermann PW. Functional weight-bearing mobilization after Achilles tendon rupture enhances early healing response: a single-blinded randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. 2017;25(6):1807–1816. doi:10.1007/s00167-016-4270-3
- 13. Leigheb M, Guzzardi G, Pogliacomi F, Sempio L, Grassi FA. Comparison of clinical results after augmented versus direct surgical repair of acute Achilles tendon rupture. Acta Biomed. 2017 Oct 18;88(4S):50–55. doi: 10.23750/abm. V 88i4 -S.6794. PubMed PMID: 29083353; PubMed Central PMCID: PMC6357657.
- Aufwerber S, Heijne A, Edman G, Silbernagel KG, Ackermann PW. Does Early Functional Mobilization Affect Long-Term Outcomes After an Achilles Tendon Rupture? A Randomized Clinical Trial. Orthop J Sports Med. 2020 Mar 16;8(3):2325967120906522. doi: 10.1177/2325967120906522. eCollection 2020 Mar. PubMed PMID: 32206673; PubMed Central PMCID: PMC7076581.
- 15. Nilsson-Helander K, Thomeé R, Grävare-Silbernagel K, Thomeé P, Faxén E, Eriksson BI, Karlsson J. The Achilles Tendon Total Rupture Score (ATRS): Development and Validation. American J Sports Med. 2007 Mar 35(3), 421–426. doi: 10.1177/0363546506294856. PMID: 17158277
- 16. Kostuj T, Stief F, Hartmann KA, et al. Using the Oxford Foot Model to determine the association between objective measures of foot function and results of the AOFAS Ankle-Hindfoot Scale and the Foot Function Index: a prospective gait analysis study in Germany.BMJ Open 2018;8:e019872. doi: 10.1136/bmjopen-2017-019872
- 17. Vidic G, Milojković V, Milenkovic S, Stojanović S, Golubović Z, Antić Z, et al. Prednost hirurškog lečenja kulture Ahilove tetive perkutanom siturom u odnosu na neoperativno lecenje. Acta Mediana Medianae 2010;49(2):34–38. ISSN 1821-2794(Online) UDK: 616.75-001.48-089

Table 1. Demographic data

Variable	Open surgery (n = 50)	Immobilization of Paris (n = 30)	р
Age (years)	42.42 ± 8.23	45.93 ± 8.91	0.077
Sex			0.021
Female	11	14	
Male	39	16	
Weight	81.28 ± 11.00	78.53 ± 12.41	0.305
Comorbidity			0.568
Diabetes mellitus	12	6	
Others	7	5	
Absent	31	19	
Affected side			0.358
Left	21	10	
Right	29	20	
Profession			0.568
Professions without physical activity	43	23	
Housewife/ unemployed	3	3	
Worker	4	4	
Mechanism of injury			0.026
Recreation	27	9	
Work	4	2	
Daily activities	13	12	
Does not know	6	7	

Table 2. Treatment and functionality data

Variable	Open surgery (n = 50)	Immobilization of Paris (n = 30)	р
Type of anesthesia			0.002
Spinal anesthesia	38	NA	
Regional block anesthesia	12	NA	
Duration of treatment (in days)	10.42 ± 11.42	69.17 ± 12.84	0.000
Complications			0.642
Infection	1	0	
Delayed wound healing	3	0	
Paresthesia	5	4	
Absent	41	26	
ATRS score (0–100)	89.10 ± 11.90	87.50 ± 2.97	0.473
AOFAS score (0–100)	90.18 ± 4.23	83.63 ± 6.22	0.000
VAS pain (0–10)	8.92 ± 0.60	7.93 ± 0.78	0.000
Palpation test			0.606
Positive	43	27	
Negative	7	3	
Thompson test			0.809
Positive	32	20	
Negative	18	10.	
Plantar flexion (degrees)			0.007
0 (0 °)	3	0	
1 (0–10°)	15	5	
2 (11–20°)	29	15	
3 (21–30°)	3	10	
Dorsiflexion (degrees °)			0.866
3 (7–10°)	19	12	
4 (11–15°)	28	17	
5 (16–20°)	3	1	
Toe gait			0.008
No difficulties	27	25	
Mild difficulties	23	5	
Satisfaction rate (1–10)	-	-	0.000
6 acceptable	2	12	
8 satisfied	30	16	
10 very satisfied	18	2	
Re-rupture	-	_	0.712
No	49	29	7
Yes	1	1	
Duration of treatment (in days)	8.82 ± 1.32	69.1 ± 16.84	0.000
Physiotherapy		All underwent	2.200
Full functionality after 6 months			0.009
Yes	44	19	2.207
No	6	11	
AFFD C A 1 11 FF 1 FF		11	

ATRS – Achilles Tendon Total Rupture Score; AOFAS – American Orthopedic Foot and

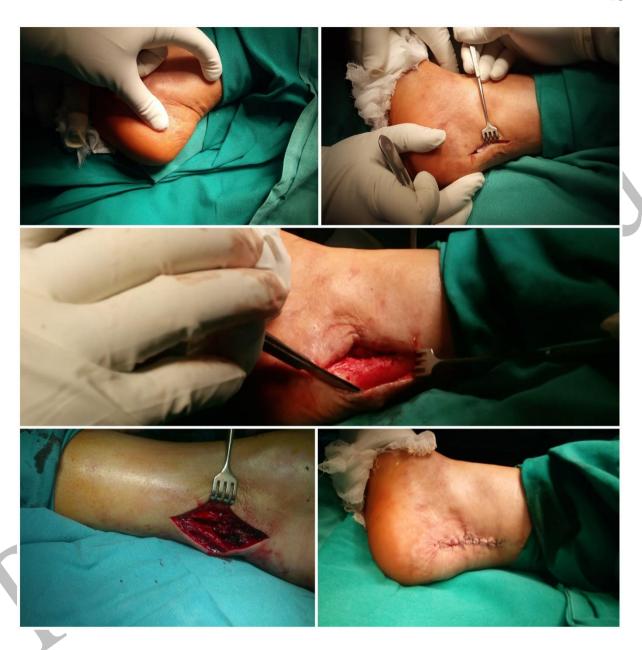
Ankle Society; VAS – visual analog scale

Table 3. The impact on clinical outcomes over time

Interval between ATR and Surgery (days)	AOFAS score (0–100)	ATRS (0-100)	VAS pain (0–10)	Satisfaction rate (1–10)
0-2 (n = 19)	90.58 ± 3.82	91.29 ± 2.81	8.95 ± 0.62	8.42 ± 0.84
3-7 (n = 31)	89.94 ± 4.50	87.77 ± 12.90	8.9 ± 0.60	8.78 ± 1.22
Significance	0.606	0.319	0.804	0.276

ATRS - Achilles Tendon Total Rupture Score; AOFAS - American Orthopedic Foot and

Ankle Society; VAS – visual analog scale


Table 4. The prediction of a positive treatment outcome by groups

Full functionality after 6 months	Open surgery (n = 50)	Immobilization of Paris (n = 30)	All patients (n = 80)
Predicted outcome	84% (42/50)	63.4% (19/30)	76.3% (71/80)
Observed outcome	88% (44/50)	63.4% (19/30)	78.8% (63/80)

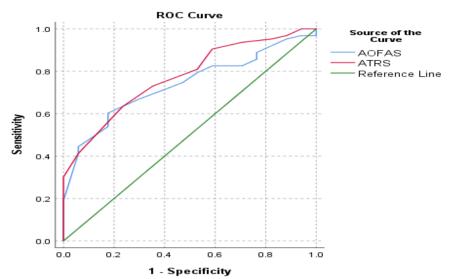


Table 5. Predictive strength of Achilles Tendon Total Rupture (ATRS) and American Orthopedic Foot and Ankle Society (AOFAS) scores analyzed by receiver operating characteristic (ROC) curve

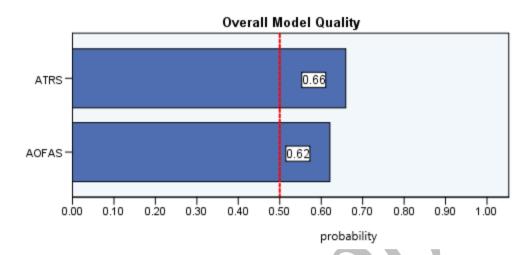

Predictive variables	Arear under the ROC	р	CI 95%
ATRS	0.773	0.000	0.659-0.886
AOFAS	0.736	0.000	0.621-0.852

Figure 1. Steps in surgery: position for surgery; surgical approach; Achilles tendon location; Achilles tendon rupture; postoperative suture

Figure 2. The area under the receiver operating characteristic curve for the following the Achilles Tendon Total Rupture Score (ATRS) and American Orthopedic Foot and Ankle Society (AOFAS) prognostic scores for the patients who fully functionally recovered within six months after acute total rupture of the Achilles tendon

Figure 3. Overall power of prognostic model; both the Achilles Tendon Total Rupture Score (ATRS) and American Orthopedic Foot and Ankle Society (AOFAS) scores are highly reliable and internally consistent (Cronbach alpha p=0.001)