

Paper Accepted*

ISSN Online 2406-0895

Original Article / Оригинални рад

Vesna Rudić-Grujić^{1,2,†}, Milkica Grabež^{1,2}, Stela Stojisavljević¹, Budimka Novaković³, Snježana Popović-Pejičić^{2,4}

Prepregnancy Body Mass Index and the Risk of Gestational Diabetes Mellitus

Индекс телесне масе пре трудноће као чинилац ризика за настанак

гестацијског дијабетес мелитуса

¹Public Health Institute of the Republic of Srpska; Banja Luka, Bosnia and Herzegovina
²Faculty of Medicine University of Banjaluka; Banja Luka, Bosnia and Herzegovina
³Medical Faculty in Novi Sad; Novi Sad, Serbia
⁴Univerity Clinical Centre of the Republic of Srpska; Banja Luka, Bosnia and Herzegovina

Received: April 11, 2016 Revised: September 7, 2016 Accepted: October 4, 2016 Online First: February 28, 2017 DOI: 10.2298/SARH160411036R

* Accepted papers are articles in press that have gone through due peer review process and have been accepted for publication by the Editorial Board of the *Serbian Archives of Medicine*. They have not yet been copy edited and/or formatted in the publication house style, and the text may be changed before the final publication.

Although accepted papers do not yet have all the accompanying bibliographic details available, they When the final article is assigned to volumes/issues of the journal, the Article in Press version will be removed and the final version will appear in the associated published volumes/issues of the journal. The date the article was made available online first will be carried over.

 [†] Correspondence to: Vesna RUDIĆ GRUJIĆ
 Public Health Institute Republic of Srpska
 Jovana Dučića str. 1, 78 000 Banjaluka, Republic of Srpska, Bosnia and Herzegovina, E-mail: vesna.rudic.g@gmail.com

Prepregnancy Body Mass Index and the Risk of Gestational Diabetes Mellitus

Индекс телесне масе пре трудноће као чинилац ризика за настанак

гестацијског дијабетес мелитуса

SUMMARY

Introduction/Objective Not only do pre-pregnancy overweight or obesity increase the risk of adverse maternal and perinatal outcomes but they also lead to gestational diabetes mellitus development.

The aim of this study was to estimate the prevalence of pre-pregnancy overweight and obesity and to investigate its association with hyper-glycemia and risk of gestational diabetes mellitus.

Methods A cross-sectional study was carried out during the period February to October 2012 among 555 pregnant women in gestation period from 24 to 28 weeks. The criterion for excluding from the sample was the previously diagnosed diabetes type 1 or type 2.

Results Before pregnancy, 20.39 % of participants had increased body mass index, while 4.04 % (CI 95%; 2.62–6.13) were obese. Gestational diabetes mellitus was diagnosed in 10.91% (95% CI, 8.44–13.98) of them. The increase in body mass index by 1 increased the risk of gestational diabetes mellitus by 1.09 times (OR = 1.09; 95% CI; 1.02–1.16). Pregnant women who were overweight had a 4.88 times greater risk (OR = 4.88; 95%CI, 1.23 - 29.41) of developing gestational diabetes.

Conclusion Every fifth pregnant woman in this study was overweight or obese before pregnancy. The increase in body mass index by 1 increased the risk of gestational diabetes by 1.09 times. Counselling is necessary to overweight and obese women planning pregnancy.

Keywords: prepregnancy body mass index; hyperglycemia; gestational diabetes mellitus

Сажетак

Увод/Циљ Повећана телесна маса и гојазност пре трудноће повећавају ризик за настанак компликација код мајке и плода у току трудноће, у току и после порођаја, а доводе се у везу са појавом гестацијског дијабетес мелитуса (ГДМ).

Циљ истраживања био је утврдити учесталост повећане телесне масе и гојазности пре трудноће код жена и њохову повезаност са појавом хипергликемије и ГДМ.

Методе Студија пресека проведена је од фебруара до октобра 2012. са 555 трудница гестације 24–28 недеља. Критеријум за искључење из испитивања био је раније дијагностикован дијабетес тип 1 или тип 2.

Резултати Повећан индекс тјелесне масе (ИТМ) прије трудноће имало је 20.39 % испитаница, од којих 4.04 % (СІ 95%; 2.62–6.13) је било гојазно. ГДМ је дијагностикован код 10.91% (СІ 95%, 8.44– 13.98) испитаница. Повећање ИТМ за 1 повећавало је ризик за појаву ГДМ 1.09 пута (OP=1.09;СІ 95%; 1.02–1.16). Труднице које су имале прекомјерну телесну масу прије трудноће имале су 4.88 пута већи ризик (OP=4,88;СІ 95%,1,23–29,41) за развој ГДМ. Закључак: Свака пета испитаница имала је прекомерну телесну масу или гојазност пре трудноће. Повећање индекса тјелесне масе за 1 повећавало је ризик за појаву ГДМ 1,09 пута. Неопходно је савјетовање жена са прекомерном телесном масом и и гојазношћу које планирају трудноћу.

Кључне ријечи: индекс тјелесне масе пре трудноће, хипергликемија, гестацијски дијабетес мелитус

INTRODUCTION

Improvement of maternal, fetal and child health are key public health goals. Changes in public health trend have challenged the health care sector to provide optimal guidance to women before, during, and after pregnancy so that they can achieve healthy outcomes for both themselves and their newborns [1].

It has been shown that women being overweight or obese before pregnancy are at increased risk of adverse maternal and perinatal outcomes [2]. The Hyperglycemia Adverse Pregnancy Outcome (HAPO) study confirms that both obesity and maternal hyperglycemia alone are independently associated with adverse obstetrical outcomes, particularly abnormal fetal growth, newborn percent body fat and preeclampsia [3]. Prepregnancy overweight and obesity are also associated with GDM development, as 65–75% of women with GDM are also overweight or obese [4].

Maternal overweight and obesity are the highest ranking modifiable risk factors. Raising of awareness and implementation of effective interventions for modifiable risk factors are priorities for stillbirth prevention [5]. Obesity prevalence has continued to grow, particularly in lower and middle-income countries. According to World Health Organization (WHO), in 2014, more than 1.9 billion adults, 18 years and older were overweight. Of these, over 600 million were obese [6]. The prevalence of overweight and obesity in women older than 20 increased between 1980 and 2013 from 29.8% (29.3–30.2) to 38.0% (37.5–38.5) [7]. According to the 2010 Household Health Survey in the Republic of Srpska, the one of the two entities in Bosnia and Herzegovina (BiH), the obesity prevalence in women older than 18 is 22.7% [8].

The objective of this study was to estimate the prevalence of pre-pregnancy overweight and obesity among women in the Republic of Srpska (BiH) and to investigate its association with hyperglycemia and increased risk of GDM.

METHODS

Study design: The research was carried out in the form of a cross-sectional study during the period February to October 2012 among pregnant women who had regular appointments with their gynecologists. The total sample consisted of 555 pregnant women in gestation period from 24 to 28 weeks. Data were collected by trained gynecologists and nurses from outpatient clinics whose selection was based on the Statistical Office analysis to ensure the equal presentation of all regions of the Republic of Srpska.

Ethical approval for the study was obtained from the Ethics Committee for Clinical Research of the Clinical Center Banjaluka, and written informed consent was obtained from all participants. The informative consent contained the basic information about the research, the explanation about the confidentiality of the information and for which purpose the information obtained in the research will be used [9, 10].

The information about the body mass before pregnancy was taken from the pregnancy medical records, or if the information was missing, it was taken from the pregnant women. The anthropometric measurements included height (cm), and weight (kg). Body mass index (BMI) was calculated as weight in kilograms divided by the square of the height in meters [11]. Classification of the nutritional status before pregnancy was done according to the WHO criteria [12]. Between 24 and 28 weeks of pregnancy, all the women underwent a 75-g oral glucose tolerance test (OGTT) in the morning, after fasting for 8-14 hours, according to WHO criteria [13]. Plasma glucose levels were taken before and one and two hours after the consumption of 75g of glucose. Weight gain from pre-pregnancy to OGTT was estimated as gain in body weight. Plasma glucose was measured by a glucose oxidase method. Gestational diabetes (Gestation diabetes mellitus; GDM) is defined

according to the criteria of the American Diabetes Association (American Diabetes Association; ADA) and its diagnosis is confirmed by one measurement of plasma glucose expressing values greater than > 5.1mmol/l at start, > 10.0 mmol/l 1 hour or > 8.5 mmol/l 2 hours after intake of 75g of glucose [14].

Statistical Methods : All statistical analyses were conducted using IBM SPSS Statistics (version 17.0). Baseline demographic characteristics were summarized using frequencies and percentages for categorical characteristics, and mean ±SD for continuous variables. Symmetric 95% confidence intervals (95% CI) were calculated for frequency. Spearman rank correlation was used for testing the association between age group and a pre-pregnancy BMI. The evolution of glycemic levels was evaluated by the Friedman repeated measure test (one-way ANOVA test) in each group. The categorical variables were compared using Fisher exact χ^2 -test where appropriate, and for continuous variables using the Student *t*-test. We used Mantel Haenszel χ^2 -test to test for association between age group (ordinal categorical variable) and the diagnosis of GDM. Finally we used binary logistic regression to analyze whether GDM could be predicted by both pre-pregnancy BMI and age group, while controlling for the effect of other variable. P values smaller than 0.05 a two tailed tests were considered to be significant.

RESULTS

The characteristics of the screened sample are shown in Table 1. The sample included 555 pregnant women from the Republic of Srpska (BIH) in the gestation period from 24 to 28 weeks. The highest percentage of pregnant women, actually 36.27% (95% CI; 32.32-40.30) was in the age group from 25 to 29 years. A majority of participants (60%) reside in urban areas. For 6.49% participants there were no information related to the nutritional status before pregnancy. The highest percentage of pregnant women, actually 70.96%; (95% CI; 66.91-74.70) were in normal BMI range before pregnancy, whereas 20.39% of the them had increased BMI, and 4.04 % (CI 95%; 2.62-6.13) were obese while 8.65% were underweight (Table 1).

		t	for Gestatio	nal Diabetes Mellit
Characteristics		n	%	95% CI
	<25	165	29.73	26.07-33.66
	25-29	201	36.27	32.32-40.30
Age group (years)	30-34	130	123.42	20.09-27.13
	35-39	50	9.01	6.88-11.70
	>40	9	1.62	0.81-3.10
	<18.50	45	8.65	6.82-10.91
Body mass index	18.50-24.99	368	70.96	66.91-74.70
(kg/m ²) category *	25.00-29.99	85	16.35	13.41-19.78
	>30.00	21	4.04	2.62-6.13
Place of living	Rural area	222	40.00	36.01-44.13
	Urban area	333	60.00	55.87-63.99

 Table 1. Baseline characteristics of the study population screened

 for Gestational Diabetes Mellitus

* For 36 examinees the information about nutritional status before pregnancy was missing.

Overall, age correlated positively with the BMI score r_s (520) = .188; p < .001, Table 2. In particular, it was obvious that obesity before pregnancy was more frequent among the older participants. Although we had only 10.44% of participants older than 35, they comprised almost a half of all obese participants in our sample (9/21, 42.85%).

Prepregnacy			Age group (years)									
BMI group [*]	10	otal	<	25	25	5-29	3()-34	3	5-39		>40
kg/m ²	n	%	n	%	n	%	n	%	n	%	n	%
<18.5	45	8.65	22	48.89	16	35.56	5	11.11	2	4.44	0	0.00
18.5-24.99	368	70.96	106	28.73	141	38.48	92	24.93	25	6.78	4	1.09
25.00-29.99	85	16.35	22	25.88	25	29.41	20	23.53	14	16.47	4	4.71
>30	21	4.04	5	23.81	4	19.05	3	14.29	8	38.09	1	4.76
Total	519	93.69	155	27.92	187	33.69	120	21.62	49	8.82	9	1.62

 Table 2. Nutritional status related to age category in women screened for Gestational Diabetes Mellitus.

 Age group (years)

The information about pre-pregnancy BMI for 36 examinees was missing *P < 0.001, value derived from Spearman rang of correlation.

According to the methodology applied in the research [14], plasma glucose values were assessed between 24th and 28th week of gestation. Fasting plasma glucose values and OGTT were measured in 89.2% of participants. Women with higher BMI scores before pregnancy tended to have higher plasma glucose values both at fasting (r_s (446) = .14, P = .002) and two hours after OGTT (r_s (462) = .11, P= .014). Figure 1 ilustrates that plasma glucose levels were higher in pregnant women which were overweight or obese before pregnancy (F (3, 461) = 3.221, P = .023).

Figure 1. Distribution of fasting glucose level related to the prepregnancy BMI, in women screened for Gestational Diabetes Mellitus.

The highest mean value of plasma glucose 2 hours after OGTT with 75 g of glucose (5.51 mmo/l) was established in pregnant women who were overweight or obese before pregnancy. However, no significant statistical correlation of plasma glucose values with the nutritional status was established (F (3.461) = 1.102, p=.348). The greatest dispersion of measured glycemia values 2 hours after OGTT, was established in pregnant women who were overweight (M =5.51±2.88 mmol/l) (Figure 2).

Graph 2. Distribution of the postload glycemia values 2 hours after OGTT, compared to BMI before pregnancy, in women screened for Gestational Diabetes Mellitus.

Table 3. Maternal characteristics stratified by gestational dia	betes
mellitus diagnosed by the American Diabetes Association cri	teria.

		Non GDM	GDM	
Characteristics		n (%)	n (%)	<i>p</i> value
		441 (89.1)	54 (10.9)	
Age group, year	<25	143 (32.4)	7 (13.0)	
	25-29	164 (37.2)	16 (29.6)	
	30-34	98 (22.2)	16 (29.6)	<.001*
	35-39	31 (7.0)	11 (20.4)	
	>40	5(1.1)	4 (7.4)	
Pre-pregnancy BMI Group, kg/m ²	<18.50	39 (8.8)	2 (3.7)	
	18.50-24.99	297 (67.3)	33 (61.1)	.056 [†]
	25.00-29.99	66 (15.0)	10 (18.5)	.056
	>30.00	16 (3.6)	4 (7.4)	
		Mean±SD	Mean±SD	_
Pre-pregnancy BMI, kg/m ²		22.51±3.67	24.10±4.97	.006 [§]

Weight gain 8.22 ± 4.49 8.27 ± 4.27 $.949^{\$}$ The information about the nutritional state before pregnancy was missing
for 28 respondents.for 28 respondents.

* χ 2-test, † Fisher's exact test, § Student's *t*-test.

Gestational diabetes mellitus was diagnosed in 10.91% (95%CI; 8.44–13.98) of participants according to the ADA criteria for diagnosing gestational diabetes mellitus. We observed that with the increase of pregnant woman's age, the frequency of GDM increased: ((1)=24.81, p<.001), (Table 3). By applying the ADA criteria for diagnosing gestational diabetes (12) for the measured values of glycemia

and by analyzing the prevalence of GDM related to the prepregnancy BMI group for the participants who had information about their nutritional before status pregnancy, we found a positive trend of GDM with increasing BMI scores (Wald z=7.07, *p*=.001).

The increase of BMI by 1, increased the risk of GDM occurrence by 1.09 times (OR = 1.09; 95% CI; 1.02-1.16).

Nevertheless, the effect of BMI became slightly smaller and statistically insignificant (Wald z= 2.28, P=.131, OR=1.06) when it was controlled for age in a multiple logistic regression. In contrast, the effect of age remained significant (Wald z= 19.98, P=.001). For instance, compared to the women younger than 25, the women who were between 35 and 39 years of age had 8.32 greater risk of developing diabetes, while the risk increased up to 18.67 for those who were older than 40. Pregnant women who were overweight had a 4.88 times greater risk (OR = 4.88; 95% CI, 1.23–29.41) of developing GDM.

6

DISCUSSION

The results of our research showed a statistically significant correlation between the increased pre-pregnancy BMI and the presence of GDM and a significant positive association between age and the presence of GDM. According to the ADA criteria for diagnosing gestational diabetes [14], the prevalence of GDM was 10.91%.

Pre-pregnancy overweight and obesity have many adverse pregnancy outcomes, including those related to hyperglycemia and the risk of developing GDM [3]. According to the results of our research, 16.35% of pregnant women were overweight while 4.04% of the participants were obese before pregnancy. Hence, every fifth pregnant woman in the Republic of Srpska was overweight or obese before pregnancy. Statistically significant linear increase of pre-pregnancy body mass index was evident in women over the age of 35. According to WHO, the prevalence of overweight and obesity has been increasing in middle income countries to which Bosnia and Herzegovina also belongs [6, 15]. The prevalence of obesity is increasing, especially in women at generative age. In France, the obesity prevalence increased from 5.2% to 11% over the period from 1997 to 2006 in women aging between 20 and 39 [16]. In America, according to the data from Pregnancy Risk Assessment Monitoring System (PRAMS), one in five women was obese when they became pregnant, which presents the increase of the obesity prevalence by 70% compared to the previous decade [17].

A positive relation was established between the nutritional status before pregnancy and the mean values of fasting and postload plasma glucose levels. The results showed an association between fasting and postload plasma glucose levels and adverse pregnancy outcomes, even in the range previously considered normal [18]. The Monash Medical Center (Clayton, Australia) research [19] also found the correlation between the increased BMI and glycemia during pregnancy. It was established that prepregnancy BMI higher than or equal to 35 kg/m² was the third independent risk factor in the development of gestational diabetes (after already diagnosed GDM registered in previous pregnancies and older age). The results of our study are in concordance with previous studies [19, 20, 21], meaning that the advance maternal age implies higher risk factor for GDM. Similarly to our research, French study of Pre and Early Post Natal Determinants of the Child's Development and Health (EDEN study) [22] also showed that the body mass index before pregnancy is independently associated with increased plasma glucose level, i.e. gestational diabetes. The risk for the gestational diabetes in EDEN study increased with the increase of BMI before pregnancy [22]. Pregnant women from the research done in the Republic of Srpska, who were obese before pregnancy, had a 4.88 times higher risk of developing GDM. Results of meta analysis of 20 studies show that the risk of developing GDM was about two, four and eight times higher among overweight, obese or severely obese compared with normal-weight women at the beginning of their pregnancies, respectively [23].

Meta analysis of the observation studies [22] including several electronic data bases and the research published from 1977 to 2000 showed that the risk of gestational diabetes is positively

associated with the prepregnancy BMI. For every 1 kg/m² increase in BMI, the prevalence of GDM increased by 0.92% [24], which is similar to the results from the research done in the Republic of Srpska where every 1 kg/m² increase in BMI increased the risk for developing GD by 1.09%. Our research did not establish any correlation between weight gain during pregnancy and the prevalence of gestational diabetes. Meta analysis of the research done in England from 1990 to 2007 [25] shows inconsistent results related to the maternal weight gain during pregnancy and the risk of GDM. According to the EDEN study, association between the risk of gestational diabetes and maternal gestational weight gain was positive and significant only when the prepregnancy body mass index was increased [20].

We are fully aware of the limitation of our study in that the information about pre-pregnancy body mass index was taken from pregnancy medical records or during interviews with mother if the information was not in the medical record.

CONCLUSION

Overweight and obesity are largely preventable. Based on the results of our research done in the Republic of Srpska, it can be concluded that it is necessary to counsel women on the importance of obtaining normal-weight before pregnancy. It is necessary that the creators of healthcare policies and public healthcare institutions intervene with the aim of providing non-obesogenic environments, the education related to healthy diet before and during pregnancy, and the importance of physical activity. The above-mentioned activities can result in the reduction of overweight and obesity prevalence and reduced risk for developing gestational diabetes.

REFERENCES

- 1. Rasmussen KM, Yaktine AL, editors. Institut of Medicine and National Research Council Committee to Reexamine IOM Pregnancy Weight Guidelines. Washington, (DC): National Academies Press; 2009.
- 2. Leddy MA, Power ML, Schulkin J. The impact of maternal obesity on maternal and fetal health. Rev Obstet Gynaecol. 2008; 1(4): 170-8.
- 3. Catalano PM, McInture HD, Cruickshank JK, McCance DR, Dyer AR, Metzger BE, et al. HAPO Study Cooperative Research group. The hyperglycemia and adverse pregnancy outcomes study: associations of GDM and obesity with pregnancy outcomes. Diabetes Care. 2012; 35(4): 780–6.
- 4. Black MH, Sacks DA, Xiang AH, Lawrence JM. Clinical outcomes of pregnancies complicated by mild gestational diabetes mellitus differ by combination of abnormal oral glucose tolerance test values. Diabetes Care. 2010; 33(12): 2524–30.
- Flenady V, Koopmanas V, Middleton P, Frøen JF, Smith GC, Gibbons K, et al. Major risk factors for stillbirth in high-income countries: a systematic review and meta-analysis. Lancet. 2011; 377(9774): 1331– 40.
- 6. World Health Organization [Internet]. Obesity and overweight: Fact sheet No 311. Geneva (CH): World Health Organization; 2015. [Updated 2015 Jan 31, Cited 2015 June 14]. Available from: http://www.who.int/mediacentre/factsheets/fs311/en/.
- Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014; 384(9945):766–81; Erratum in Lancet. 2014; 384(9945):746.

- 8. Ministry of Health and Social Welfare Republic of Srpska. The research on the health status of the citizens of the Republic of Srpska. Banja Luka (B&H): Ministry of Health and Social Welfare, Republic of Srpska; 2011.
- 9. World Health Organization. Standards and operational guidance for ethics review of health-related research with human participants. Geneva (CH): World Health Organization; 2011.
- 10. World Medical Association. Declaration of Helsinki-ethical principles for medical research involving human subject. Ferney-Voltaire Cedex (FR): World Medical Association; 2013.
- 11. World Health Organization. WHO Expert Committee on Physical Status: the use and interpretation of anthropometry: report of a WHO expert committee. Technical report series 854. Geneva (CH): World Health Oraganization; 1995.
- 12. World Health Organization [Internet]. Global database on body mass index- BMI classification. Geneva (CH): World Health Organization; 2011. [Updated 2013 March 1; Cited 2014 Feb 12]. Available from: http://apps.who.int/bmi/index.jsp?introPage=intro_3.html.
- 13. World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of WHO/IDF consultation. Geneva (CH): World Health Organization; 2006.
- American Diabetes Association. Standards of medical care in diabetes 2014. Diabetes Care. 2014; 37 Suppl 1: S14–80.
- 15. World Bank Publication. World development indicators 2012. Washington (DC): The World Bank; 2012.
- 16. Charles MA, Eschwege E, Basdevant A. Monitoring the obesity epidemic in France: The Obepi Surveys 1997–2006. Obesity. 2008; 16(9): 2182–6.
- 17. Kim SY, Dietz P, England L, Morrow B, Callaghan WM. Trends in pre-pregnancy obesity in nine states, 1993–2003. Obesity. 2007; 15(4):986–93.
- 18. Kalter-Leibovici O, Fredman LS, Olmer L, Liebermann N, Heymann A, Tal O, et al. Screening and diagnosis of gestational diabetes mellitus: critical appraisal of the new International Association of Diabetes in Pregnancy Study Group recommendations on a national level. Diabetes Care. 2012; 35(9): 1894–96. Erratum in: Diabetes Care. 2012; 35(12): 2718.
- Teh WT, Teede HJ, Paul E, Harrison CL, Wallace EM, Allan C. Risk factors for gestational diabetes mellitus: implications for the application of screening guidelines. Aust N Z J Obstet Gynaecol. 2011; 51(1): 26–30.
- 20. Lao TT, Ho LF, Chan BC, Leung WC. Maternal age and prevalence of gestational diabetes mellitus. Diabetes Care. 2006; 29(4):948–9.
- 21. Anna V, Van der Ploeg HP, Cheung NW, Huxley RR, Bauman AE. Sociodemographic correlates of the increasing trend in prevalence of gestational diabetes mellitus in a large population of women between 1995 and 2005. Diabetes Care. 2008; 31(12): 2288–93.
- 22. Heude B, Thiebaugeorges O, Goua V, Forhan A, Kaminski M, Foliguet B, et al. Pre-pregnancy body mass index and weight gain during pregnancy: Relations with gestational diabetes and hypertension, and birth outcomes. Matern Child Health J. 2012; 16(2): 355–63.
- 23. Chu SY, Callaghan WM, Kim SY, Schmid CH, Lau J, England LJ et al. Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care. 2007; 30(8): 2070–6.
- 24. Torloni MR, Betrán AP, Horta BL, Nakamura MU, Atallah AN, Moron AF, et al. Prepregnancy BMI and the risk of gestational diabetes: a systematic review of the literature with meta-analysis. Obes Rev. 2009; 10(2):194–203.
- 25. Viswanathan M, Siega-Riz AM, Moos MK, Deierlein A, Mumford S, Knaack J, et al. Outcomes of maternal weight gain, Evidence report/Technology assessment No.168. Rockville (MD): Agency for Healthcare Research and Quality, (US); 2008 May. Report No. 08-E009.