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SUMMARY

Apoptosis (type of programmed cell death) is an active process of cellular self-destruction in multicellular
organisms. It is characterized by distinctive histomorphological, biochemical, and molecular features.
Multiple cellular pathways trigger apoptosis, two of them are the best known: intrinsic and extrinsic.
Multiple cellular signals and interactions can influence the course of apoptotic pathways. Bcl-2 family
proteins play a key role in regulatory mechanisms of intrinsic apoptosis. Mitochondrial outer membrane
permeabilization (MOMP) is an essential step for intrinsic apoptosis that is controlled by pro-apoptotic
and anti-apoptotic members of Bcl-2 protein family. Pro-apoptotic effector proteins Bax and Bak represent
the only Bcl-2 proteins inducing formation of MOMP, whose pores facilitate the subsequent releasing of
several pro-apoptotic proteins from mitochondrial intermembrane space into cytosol. These proteins
initiate a caspase cascade, resulting in rapid elimination of the doomed cells.
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INTRODUCTION

Apoptosis (form of programmed cell death,
type I cell death) is an evolutionary conserved
death machinery activated by a wide range of
diverse stimuli, both physiological and patho-
logical. This is a genetically controlled death
pathway, which occurs in normal development
and aging, and maintains proper cell homeo-
stasis. Apoptosis is considered a potent defense
program serving to remove supernumerary, un-
desirable, useless, and cells damaged by disease.
It also plays an essential role in the immune
reactions [1, 2]. Apoptosis is an active and
physiological, energy-dependent form of cell
death. In order to maintain normal function
and cooperation of all tissues, organs, and sys-
tems, millions of cells die and proliferate every
day. Imbalance between cell death and prolif-
eration is implicated in many diseases. Thus,
dysfunction or dysregulation of the apoptotic
program may cause a wide spectrum of patho-
logical conditions, such as neurodegenerative
disorders, autoimmune diseases, ischemic dis-
eases, and a variety of cancers [3-7].
Morphologically, at light microscope level,
apoptosis affects individually dispersed cells,
but the broad tissue architecture remains un-
disturbed. Apoptotic cells are easily identifiable
in low magnification because they are located
within an unstained “halo” around them. Large
apoptotic cells fragment into small apoptotic
bodies with an intact membrane. Smaller
cells, such as apoptotic granular layer cells of
the cerebellar cortex, do not usually fragment.
Apoptotic bodies are rapidly and discretely
taken up by macrophages or neighboring cells

with phagocytic activity. In contrast to necrosis,
there is no inflammatory response of the sur-
rounding tissue [8, 9].

At electron microscope level, apoptotic
cells are characterized by shrinkage and con-
densation of the cytoplasm as a result of water
content reduction. Cytoplasmic organelles are
packed together, although initially they are
morphologically preserved and functionally
active. Nuclear chromatin presents organized
condensation, margination, and fragmentation.
Cell junctions and other surface specializations
are lost, but the plasma membrane remains,
displaying blebbing [1].

The multiple cellular pathways trigger the
apoptotic process. Two of them are characterized
the best: an intrinsic or a mitochondrial path-
way, and an extrinsic or a death receptor path-
way [10]. These two main pathways are related
via specific molecules in one pathway that can
influence a course of the other [11]. In addition,
a perforin/granzyme pathway (granzyme B and
granzyme A) can induce apoptosis. It is known
that extrinsic, intrinsic, and granzyme B pathway
may terminally converge on the execution phase
of the apoptotic cascade. The granzyme A death
course is caspase-independent [1].

Nevertheless, the Nomenclature Committee
on Cell Death (NCCD) proposed an updated
classification of cell death subroutines focused
mainly on molecular principles of demise ma-
chinery. In the most recent paper, NCCD rec-
ognizes intrinsic apoptosis, extrinsic apoptosis,
mitochondrial permeability transition (MPT)-
driven necrosis, necroptosis, ferroptosis, pyrop-
tosis, parthanatos, entotic cell death, NETotic
cell death, lysosome-dependent cell death, au-
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tophagy-dependent cell death, immunogenic cell death,
cellular senescence, and mitotic catastrophe [8].

INTRINSIC APOPTOSIS

Bcl-2 family proteins

Mitochondria are the intracellular organelles which repre-
sent a nodal point for many death signals (Figure 1). They
may converge to trigger both mitochondrial membranes
permeabilization and mitochondrial proteins release.
One of the most famous groups of signals controlling
complicated death machinery is the Bcl-2 family protein.

Figure 1. Transmission electron microscope image of a thin section
through cell of MCF7 cell line showing numerous mitochondria (ar-
rows); origin of cell line: human breast adenocarcinoma
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For the first time, Bcl-2 gene was discovered in B-cell fol-
licular malignant lymphoma [12, 13]. There is t(14; 18)
translocation, where Bcl-2 gene is translocated from its
normal location on the long arm of chromosome 18 to
a region adjacent to promoter in the immunoglobulin
heavy-chain locus on the long arm of chromosome 14.
Gene activation and over-production of the encoded pro-
teins lead to inhibition of cell death and the promotion of
lymphomagenesis [14, 15].

Bcl-2 proteins have either pro-apoptotic or anti-apop-
totic function and they are key regulators of intrinsic apop-
totic pathway.

The group of Bcl-2 proteins consists of at least 25 mem-
bers to date [3]. They are classified into three subgroups,
based on their function in apoptotic process and the num-
ber of Bcl-2 homology domains (BH1, BH2, BH3, and BH4)
[16]. Interestingly, they share several common features. All
of them are composed of alpha helices. These alpha helical
structures possess one to two central hydrophobic helix
(helices) which are surrounded by six to eight amphipa-
thic helices. The structural similarity of Bcl-2 alpha helices
to the membrane-translocation domain of the diphtheria
toxin and the bacterial colicins suggests that Bcl-2 fam-
ily proteins are capable of pore forming activity in lipid
membranes [17]. A flexible loop is present in all three main
subgroups; it is known to be a regulatory structure. The
Bcl-2 homology domains (BH1, BH2, BH3, and BH4) are
localized either in one alpha helix or through two helices.
They function in interactions between proteins. There are
also alpha helices, which are involved in membrane con-
nections (membrane-binding region). However, structural
variations of Bcl-2 family proteins are known both in the
number and the arrangements of helices, in the number of
BH domains and in the structure of a loop [18, 19].

The first subgroup, the anti-apoptotic or pro-survival
Bcl-2 proteins possess four BH domains (BH1-BH4)
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Figure 6. Basic schematic structure of BH3-only pro-apoptotic Bcl-2 proteins subgroup
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Figure 3. Immunohistochemical reaction with anti-Bcl-2 antibody in
human appendix lymphoid tissue

Figure 5. Immunohistochemical reaction with anti-Bax antibody in
breast adenocarcinoma

Figure 7. Immunohistochemical reaction with anti-Bid antibody in
breast adenocarcinoma; both anti-Bax and anti-Bid antibodies were
applied on the tissue sections from an identical paraffin block

(Figure 2). They act as suppressors of cell death by direct
binding and inactivating the pro-apoptotic Bcl-2 proteins.
Bcl-2 itself (Figure 3), Bcl-XL, Mcll, Bcl-W, and A1 proteins
are members of the anti-apoptotic subgroup [18, 20, 21].

The second multidomain subgroup, the pro-apoptotic
effector proteins Bax (Figure 5), Bak, and Bok, contains
three BH domains (BH1-BH3) (Figure 4) and directly per-
meabilizes the outer mitochondrial membrane to release
apoptogenic factors [18, 22, 23].

The third subgroup, pro-apoptotic members of Bcl-2
protein family, contains a single BH3 domain (Figure 6)
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and is very heterogeneous [18]. The BH3-only pro-apop-
totic proteins can be further divided as “activators” if they
directly interact with mitochondrial Bax and/or Bak to
cause conformational changes with subsequent activation,
which is necessary for mitochondrial outer membrane per-
meabilization (MOMP) (Bid - Figure 7, Bim, Puma, Noxa)
[17, 24, 25]. In contrast, “sensitizers” or “inactivators” bind
and inhibit anti-apoptotic Bcl-2 proteins (Bad, Bmf, Hrk,
Bik) [22, 26, 27].

In order to regulate apoptotic machinery, Bcl-2 proteins
interact with each other and generate a complicated inter-
action network. This plays an executive role in the decision
whether a cell will live or die [3, 28].

The essential step for intrinsic apoptotic pathway is
MOMP. This directly causes an irreversible release of dif-
ferent mitochondrial intermembrane space proteins into
cytosol with subsequent activation of caspase cascade [22,
29]. MOMP is controlled by outstanding features of pro-
apoptotic and anti-apoptotic members of the Bcl-2 family.
These proteins are localized in the mitochondria either
constitutively or by induction. Mutual interactions between
Bcl-2 proteins act as central regulators of MOMP [30].

Physiologically, the outer mitochondrial membrane
(OMM) is permeable to proteins up to 5 kDa. In contrast,
MOMP pores facilitate the passage of proteins larger than
100 kDa to cytosol [31, 32]. Pro-apoptotic effector proteins
Bax and Bak represent the only Bcl-2 proteins able to form
pores across the OMM [20, 21]. The third effector protein
Bok can act as a trigger for the induction of MOMP in
response to endoplasmic reticulum stress insults. Bok ac-
tivation does not depend on interaction with other Bcl-2
proteins [33, 34].

In healthy conditions, Bak is constitutively membrane
bound, it resides on the OMM and shows only a small cy-
tosolic fraction caused by retrotranslocation. Bax continu-
ously cycles between the cytosol and the OMM [3, 32, 35].

ACTIVATION OF BAX AND BAK BCL-2 PROTEINS

The BH3-only pro-apoptotic proteins can be activated by
various cytotoxic stresses with subsequent direct interac-
tion with Bax/Bak. The BH3 domain of the BH3 activa-
tor- only Bid and Bim proteins bind to the BH3 domain
- binding groove in Bax and Bak [36, 37]. Worthy of note,
Bid and Bax interact in this way only when both of them
are on mitochondrial membranes. In Bax and Bak effectors
are activated, the “latch” region of proteins represented
by a6-a8 moves away from the core region formed by
al-a5. This transiently exposes the BH3 domain local-
ized in a2 and is an essential step for Bax dimerization
[37, 38, 39]. As a consequence, the bent core region be-
comes straightened and then interacts with the MOM by
exposure of C-terminal hydrophobic domain in a2-a5.
Generally, the hydrophobic segment of Bcl-2 is required for
anchoring the protein in question to various intracellular
organelles, including mitochondria, endoplasmic reticu-
lum, and nuclear outer membranes. In the meantime, the
exposed a2/BH3 domain of the effector protein binds to
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the groove of an adjoining effector protein and this mu-
tual BH3-groove interaction forms dimer. Formation of
the dimer displaces the BH3 domain of direct activator
BH3-only proteins, accounting for the “kiss-and-run”
model [22, 23, 40, 41]. According to the “kiss-and-run”
model, the BH3-only direct activators bind transiently to
Bax, they do not remain coupled with the pro-apoptotic
effectors. Thus, activated Bax and Bak form homodimers
and further dimer-by-dimer oligomerization [42, 43, 44].
Bax/Bak oligomers permeabilize the OMM and induce the
formation of membrane pores (MOMP).

For Bax, another binding site has been reported. When
the Bax is soluble in the cytosol, its BH groove is associated
with the carboxy-terminal a9 helix of the protein. The Bim
BH3 domain does not bind to the canonical hydropho-
bic groove but it binds to the "rear” activation site on the
opposite side of the hydrophobic groove (helices al-a6)
[27]. It is followed by the Bax conformational changes and
subsequent exposure of the carboxy-terminal a9 helix. This
a9 helix is exposed for other interactions and additionally
merges with MOM. At that point, BH groove becomes ac-
cessible to the BH3 domain of direct activator proteins, Bax
oligomerizes and induces MOMP [22, 27, 39]. MOMP takes
only a few seconds per mitochondrion. However, the onset
of this process for each mitochondrion in a cell can vary;
around five minutes are needed for all mitochondria in one
cell to be permeabilized [23]. Of note, a partial MOMP can
occur, which does not cause cell death following sublethal
stresses. In the incomplete MOMP, most but not all mito-
chondria within a cell show MOMP. In minority MOMP,
only a few mitochondria experience MOMP [23].

The BH3 domain of sensitizer BH3-only proteins inter-
acts with BH3 domain-binding groove of anti-apoptotic
Bcl-2 proteins, inhibiting their function.

In fact, this BH3-in-groove interaction represents an
essential mechanistic facet of Bcl-2-controlled intrinsic
apoptosis.

MOMP is inhibited by anti-apoptotic Bcl-2 family mem-
bers. This group of pro-survival proteins possesses all BH
domains and they are embedded into OMM or endoplas-
mic reticulum (ER) membrane. Pro-survival Bcl-2 proteins
prevent oligomerization of Bax and Bak and pore-forming
function by two mechanisms: directly, by their physical se-
questration at the OMM, or indirectly, by the sequestration
of BH3-only activator pro-apoptotic proteins [20, 25, 45].

It is believed that MOMP is also influenced by shape and
size of mitochondria [46, 47]. Mitochondrial lipid compo-
sition can participate in the activation of Bcl-2 proteins.
Cardiolipin, localized on the mitochondrial inner mem-
brane, may facilitate tBid-mediated activation of Bax and
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later large pore formation in liposomes [48]. Ceramides are
also involved in the apoptotic process. They are synthesized
at the ER through the sphingomyelin pathway and accu-
mulated in the MOM during apoptosis. Ceramides in the
MOM play a role in Bax activation and, in turn, Bax can
activate synthesis of ceramides [49, 50]. Furthermore, two
metabolites within the sphingolipid pathway, sphingosine-
1-phosphate and aldehyde 2-trans-hexadecanal, directly
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BOK BCL-2 PROTEIN

Unlike Bak and Bax, Bok is localized at the ER membrane
and contributes to its homeostasis [52]. Bok appears to
be constitutively active and may be antagonized by the
endoplasmic reticulum-associated degradation (ERAD)
pathway. It is not inhibited by anti-apoptotic Bcl-2 pro-
teins [33]. If ERAD system becomes affected, Bok might
accumulate and move to mitochondria, where it induces
MOMP. Bok functions independently of Bak and Bax or
other Bcl-2 proteins [39, 53].

CONCLUSION

Intrinsic apoptosis is controlled by Bcl-2 intra-family interac-
tions involving pro-apoptotic and anti-apoptotic molecules.
Pro-apoptotic effector proteins Bax and Bak oligomerize in
the MOM to form MOMP with subsequent releasing of
several pro-apoptotic proteins from mitochondrial inter-
membrane space into cytosol [27]. Once released to cyto-
sol, they can initiate or promote apoptotic pathways. These
proteins can be divided into two groups. The first group is
composed of cytochrome ¢, Smac/DIABLO, and HtrA2/
OML. They induce the activity of the caspase system, lead-
ing to cell self-destruction. The second group proteins, AIF
and endonuclease G, can translocate into nucleus and cause
DNA disintegration by the caspase-independent mode [26].
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Jloruka KomnaeKkcHOCT PpyHKuUMje nopoguue npotenHa Bel-2 y yHyTpawboj

anonTtosu

Mapwan AgamkoB

YHuBep3uteT KomeHckor y bpatncnasu, Jecennjes meguumHckn dakyntet y MapTuHy, Kateppa 3a xuctonorujy u em6puonorujy, MapTiH,

CnoBauka

CAMETAK

AnonTo3a (BpcTa nporpamupaHe henmjcke cMpTL) akTUBaH je
npouec henujckor camoyHuLwTea BrLERenmnjcKux opraHusa-
Ma. KapaKkTepuile ce pas3nnuymTnm XmctoMopdonoLKmm, 6ro-
XEMUjCKMM 1 MONIeKyNapHUM oannkama. Pasnununti henvjcku
MeXaHN3MM JOBOAE A0 HAaCTaHKa arnonTose, of KOjuX Cy Haj-
NMO3HaTUjW YHYTPaLLkbY 1 CNosballkby. Buwectpykn henujcku
CUTHANN 1 HTepaKLimje MOry yTULLaTy Ha TOK anonTose. [Mopo-
Anua npoTenHa Bcl-2 nrpa KibyyHy ynory y perynatopHum me-
XaHV3MVMa YHYTpaLlbMX YMHMNaLa anonTo3e. [Nepmeabunuza-
Lyja cnosballtbe MembpaHe mutoxoHapuja (MCMM) KibyyHu je
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Kopak 3a noyeTaK yHyTpallHe anonTo3e, KOoju je KOHTPonMcaH
NPOanoNTOTUYKMM U @aHTUANONTOTUYKVM MPOTENHMMA NOPO-
AviLe npotevHa Bcl-2. MpoanonToTnyky epekTopHN NPOoTerHM
Bax v Bak jepuHu cy Bcl-2 npoTenHu Koju MHAYKYjy HacTaHaK
MCMM, unje nope onakLuaBajy ClefcTBEHO ocnobaharbe HeKo-
JINKO MPOAMNONTOTUYKMX MPOTENHA 113 MUTOXOHAPWjanHOT Mehy-
MeMObpaHcKor npocTopa y uutocon. OBy NPOTEUHU MHULIMPA]jY
Kackapy Kacnase, goBopaehu go 6p3e envimmHaLmje anonto3om
3axBaheHe henuje.

KmbyuHe peun: yHyTpalluka anonTo3a; Bcl-2; Bax; Bak
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