Case report / Приказ болесника

Tjaša Ivošević1,2,⁎, Ljiljana Ranković-Ničić3, Ljubiša Mirić4, Ana Jotić1,5 Bojana Bukurov1,5

Cervical plexus block – safe anesthesia for the patients with massive mediastinal lymphadenopathy

Блок цервикалног плексуса – безбедна анестезија за пацијенте са масивном медијастиналном лимфаденопатијом

1University of Belgrade, Faculty of Medicine, Belgrade, Serbia; 2University Clinical Centre of Serbia, Centre for Anesthesiology and Resuscitation, Belgrade, Serbia; 3Dedinje Institute for Cardiovascular Diseases, Belgrade, Serbia; 4Kruševac General Hospital, Department of Anesthesiology and Intensive Medicine, Kruševac, Serbia; 5University Clinical Centre of Serbia, Clinic for Otorhinolaryngology and Maxillofacial Surgery, Belgrade, Serbia

Received: February 18, 2023
Revised: September 3, 2023
Accepted: September 6, 2023
Online First: September 8, 2023
DOI: https://doi.org/10.2298/SARH230218083I

⁎Correspondence to:
Tjaša IVOŠEVIĆ
University Clinical Centre of Serbia, Centre for Anesthesiology and Resuscitation, Pasterova 2, 11000 Belgrade, Serbia
E-mail: tjasa.ivosevic@gmail.com
Cervical plexus block – safe anesthesia for the patients with massive mediastinal lymphadenopathy

Блок цервикалног плексуса – безопасна анестезија за пацијенте са масивном медијастиналном лимфаденопатијом

SUMMARY

Introduction General anesthesia is frequently employed in neck surgery procedures. However, in patients at high risk for general anesthesia, regional anesthesia options, such as the superficial cervical plexus block, warrant careful consideration. Patients with mediastinal lymph node enlargement face an elevated risk of airway obstruction and hemodynamic mediastinal instability during anesthesia induction. In selected neck surgeries, including thyroglossal cyst excision, thyroglossal fistula repair, bronchial cyst removal, thyroidectomy, and lymph node excision, the superficial cervical plexus block presents a viable and secure alternative to general anesthesia.

Case report This report details the case of a patient with mediastinal lymphadenopathy and multiple brain metastases who underwent cervical lymph node excision. Given the patient’s severe comorbidities, pronounced risk of complete distal airway obstruction, hemodynamic instability, and the potential for compression effects from mediastinal mass, a superficial cervical block was administered. This block facilitated effective perioperative analgesia without inducing respiratory or cardiovascular instability.

Conclusion The superficial cervical plexus block emerges as a prudent alternative to general anesthesia in high-risk patients necessitating cervical lymph node excision procedures. Its utilization should be considered in such cases to enhance patient safety and perioperative management.

Keywords: cervical plexus; excision lymph node; airway obstruction; anesthesia; analgesia

INTRODUCTION

General anesthesia is the prevailing choice for neck surgeries; however, in patients with elevated anesthesia-related risks, regional anesthesia options such as the superficial cervical plexus block (SCPB) emerge as a potentially safer alternative [1]. Notably, patients presenting...
with mediastinal lymph node enlargement face an increased susceptibility to airway obstruction and hemodynamic instability during the induction of general anesthesia. This susceptibility arises from the potential compressive effect of mediastinal masses on structures distal to the tracheal tube tip, including the inferior and superior vena cava, ascending and descending aorta [2]. For specific neck and maxillofacial surgical procedures (e.g., thyroglossal cyst excision, thyroglossal fistula repair, branchial cyst removal, thyroidectomy, lymph node excision, lipoma removal, mandibular fracture repair), SCPB represents a viable and safe alternative to conventional general anesthesia [3]. The SCPB encompasses the sensory innervation of the anterolateral neck, originating from the anterior primary rami of the second to fourth cervical nerves [2, 3].

CASE REPORT

A 67-year-old male with bilateral neck lymphadenopathy was admitted to the Clinic for Ear, Nose, Throat, and Maxillofacial Surgery at the University Clinical Centre of Serbia for the excision of a left cervical lymph node. The patient had noticed a visible neck mass on the left side four months prior and had been experiencing hoarseness. His medical history only revealed hypertension. On physical examination upon admission, revealed normal ear, nose, and throat findings, along with the palpable, a 30 mm-sized neck tumor in the left IIa region. Brain computed tomography (CT) revealed multiple metastases of unknown primary origin. Neck and chest CT scans revealed a left-sided neck lymph node measuring 25 × 16 × 25 mm, a right-sided neck lymph node measuring 12x6mm, and an 86 × 77mm conglomerate of mediastinal lymph nodes situated in front of the trachea, among the ascending and descending aorta, and the inferior vena cava (Figure 1). Other routine investigations yielded normal results. The patient received midazolam as premedication. A landmark based SCPB was performed for the patient undergoing lymph node excision in the upper third of the left neck area. A 20 ml
solution of local anesthetics (0.5% bupivacaine 10 ml + 2% lidocaine 6 ml + 0.9% NaCl 4 ml) was employed. The procedure involved placing a 22G needle subcutaneously at the mid-portion of the posterior border of the sternocleidomastoid muscle (SCM) while targeting the origin of all superficial branches of the cervical plexus. Subsequently, 10 ml of the local anesthetic solution was injected subcutaneously at this point, following aspiration. The needle's depth of insertion was maintained at 0.5 cm to minimize the risk of deeper block or inadvertent injection.

Given the lymph node’s positioning between the innervation areas of the great auricular nerve and transverse cervical nerve, the needle was redirected towards these nerves, and each was blocked by the administration of 5 ml of local anesthetic solution. The block’s efficacy was assessed after a 10/minute interval, with the patient receiving oxygen via a simple face mask. Throughout the intraoperative period, monitoring included blood pressure, heart rate, echocardiography, and pulse oximetry. The surgical procedure was finished after 25 minutes, with the perioperative period proceeding without complications such as pain, respiratory issues, or hemodynamic instability. The patient was discharged from the hospital the second postoperative day.

This case report has received approval from the Ethics Committee of the University Clinical Centre of Serbia (Reference No: 1100/6).

DISCUSSION

Mediastinal lymph node enlargement can result from various etiologies, including neoplasms (e.g., Hodgkin’s disease, non-Hodgkin lymphoma, leukemia, metastasis), granulomatous diseases (e.g., sarcoidosis, amyloidosis, Wegener’s disease), or reactivity to infectious diseases (e.g., tuberculosis, fungal infections, viral and mycoplasma pneumonias) [4]. Depending on their location, mediastinal masses may lead to airway obstruction, producing
symptoms such as dyspnea in cases of proximal obstruction or a non-productive cough with distal obstruction. In our patient's case, hoarseness likely resulted from the compressive effect of the mediastinal mass on the left recurrent laryngeal nerve, as part of the mass extended beneath the aortic arch, where the nerve typically courses. Severe airway obstruction can unexpectedly occur upon the induction of general anesthesia in patients, even in the absence of preoperative symptoms, emphasizing the need for a careful review of chest radiographs and CT scans for signs of asymptomatic airway obstruction. Typically, the point of obstruction is distal to the tracheal tube tip. Furthermore, the loss of spontaneous ventilation can lead to complete airway obstruction. [5]. Previous literature has documented severe respiratory complications during general anesthesia in children with mediastinal masses [6]. While our patient did not exhibit clinical signs of airway obstruction, the mass's position posed a significant risk of distal airway obstruction during anesthesia induction and a loss of spontaneous breathing. Although an option would have been to opt for general anesthesia while maintaining spontaneous breathing, this approach might have led to coughing and increased intracranial pressure. Given the presence of diffuse brain metastases, such outcomes were strongly discouraged.

Cervical plexus block (CPB) is widely utilized in neck vascular surgery, but its application in non-vascular neck surgery has been increasing. Regional anesthesia techniques, such as CPB, offer numerous advantages over general anesthesia for surgeries involving the neck region. CPB does not compromise the airway, breathing, or hemodynamics. The contemporary popularity of CPB has surged as it offers opioid-free anesthesia, sparing patients from the various side effects associated with opioid usage. This concept aligns with the principles of opioid-free analgesia, rendering CPB a favored method of anesthesia, particularly in thyroid surgery [7, 8]. In case of surgery of posterior neck region, general anesthesia is the method of the choice, because CPB encompasses the sensory innervation of the anterolateral
neck. CPB can be performed at superficial, intermediate, or deep levels. Deep CPB, described as a paravertebral block targeting the C2-C4 spinal nerves, not only affects superficial branches but also deep branches of the cervical plexus, resulting in neck muscle relaxation. Local anesthetics are injected into the space between the paravertebral fascia and the cervical transverse process. Superficial CPB, on the other hand, is conventionally characterized as a subcutaneous injection technique administered at the mid-portion of the posterior border of the SCM, targeting the superficial branches of the cervical plexus. Both ultrasound-guided and landmark-based techniques are available for performing CPB. In the case of SCPB, there is currently insufficient clinical data to definitively establish the superiority of ultrasound-guided techniques over landmark-based methods. Hence, we elected to employ a landmark-based approach, which is readily accessible and does not necessitate specialized equipment such as an ultrasound machine. Intermediate CPB, in which the needle pierces the investing fascia of the neck, deep to the subcutaneous layer but superficial to the prevertebral fascia, represents another variation. [9]

The literature indicates that SCPB yields results comparable to combined cervical block but with fewer complications [10]. In a study conducted by Mukhopadhyay et al., which involved bilateral SCPB, no major complications (e.g., central nervous system toxicity, spinal anesthesia) were observed, with only minor hematomas reported [1]. Severe complications, such as phrenic nerve blockade, are uncommon following superficial block but are more frequently encountered with deep CPB. SCPB serves as a valuable anesthesia method for patients with severe comorbidities or specific conditions, including asthma, chronic obstructive pulmonary disease, coronary artery disease, diabetes mellitus, difficult airway, urgent tracheostomy, active COVID-19 infection, hypertension, previous cerebral embolism, all of which are considered high-risk factors for general anesthesia. In such patients, SCPB offers a simple and secure alternative to general anesthesia, with established efficacy and safety,
especially in high-risk scenarios [11, 12, 13, 14, 15, 16, 17]. Our patient experienced no pain during or after the procedure, aligning with data from the literature indicating effective perioperative analgesia in neck surgery achieved through SCPB [18, 19, 20]. A recent study by Patel et al. found that SCPB, in conjunction with general anesthesia, resulted in reduced intraoperative fentanyl requirements and postoperative paracetamol use compared to general anesthesia alone in various head and neck surgeries. These findings corroborate the efficacy of SCPB in providing effective analgesia in head and neck surgery [21].

In summary, we present a case of SCPB that provided effective perioperative analgesia without inducing respiratory or cardiovascular instability in a patient with diffuse brain metastases and significant mediastinal lymphadenopathy undergoing neck lymph node excision. SCPB should be considered as a safe alternative to general anesthesia for high-risk patients requiring cervical lymph node excision.

Conflict of interest: None declared.
REFERENCES

Figure 1. Computed tomography scan of mediastinal lymphadenopathy at the level of tracheal carina; pink arrow – inferior vena cava; red arrow – lymph node conglomerate; blue arrow – tracheal carina; green arrow – descending aorta; yellow arrow – ascending aorta