Selective laser trabeculoplasty as adjunctive treatment in pseudoexfoliative glaucoma patients

Marko Kontić, Dušan Todorović, Rada Zečević, Tatjana Šarenac-Vulović

1Belgrade Ophthalmological Center, Belgrade, Serbia; 2Kragujevac Clinical Center, Clinic of Ophthalmology, Kragujevac, Serbia; 3University of Kragujevac, Faculty of Medical Sciences, Department of Ophthalmology, Kragujevac, Serbia

Received: August 23, 2021
Accepted: March 17, 2022
Online First: March 28, 2022
DOI: https://doi.org/10.2298/SARH210828033K

Accepted papers are articles in press that have gone through due peer review process and have been accepted for publication by the Editorial Board of the *Serbian Archives of Medicine*. They have not yet been copy-edited and/or formatted in the publication house style, and the text may be changed before the final publication.

Although accepted papers do not yet have all the accompanying bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: the author’s last name and initial of the first name, article title, journal title, online first publication month and year, and the DOI; e.g.: Petrović P, Jovanović J. The title of the article. Srp Arh Celok Lek. Online First, February 2017.

When the final article is assigned to volumes/issues of the journal, the Article in Press version will be removed and the final version will appear in the associated published volumes/issues of the journal. The date the article was made available online first will be carried over.

*Correspondence to:
Dušan Todorović
Clinic of Ophthalmology, Kragujevac Clinical Center, Zmaj Jovina 30, 34000 Kragujevac, Serbia
E mail: dr dusantodorovic@yahoo.com
Selective laser trabeculoplasty as adjunctive treatment in pseudoexfoliative glaucoma patients

Селективна ласер трабекулопластика као адијунтна терапија код пацијената са псеудоексфолијативним глаукомом

SUMMARY
Introduction/Objective Pseudoexfoliation syndrome is characterized by abnormal production and accumulation of fibrillar, white-gray, “dandruff-like” material in almost all ocular structures. The aim of this study was to examine effect of selective laser trabeculoplasty in pseudoexfoliation glaucoma patients.

Methods Thirty-two patients (47 eyes) were enrolled with medically uncontrolled pseudoexfoliation glaucoma. All patients could not reach target intraocular pressure with maximal tolerated medical therapy before treatment. Selective laser trabeculoplasty was performed with about 100 non-overlapping spots. Intraocular pressure was measured 1 hour, 7 days, 4 weeks, 3, 6, 12, 18 and 24 months after procedure.

Results The mean base intraocular pressure was 23.45 mmHg (SD = 3.07). Statistically significant reduction of mean intraocular pressure was observed at all follow-ups except 1 hour after treatment. Mean intraocular pressure after 24 months was 18.39mmHg (SD = 1.82). Success, defined as intraocular pressure reduction from base IOP of more than 20% after 24 months, was achieved in 27 eyes (57.45%). We did not find any influence of sex and age on selective laser trabeculoplasty effects in pseudoexfoliative glaucoma patients. Baseline intraocular pressure is proved to be reliable predictor of intraocular pressure lowering effect, as there were strong correlation between baseline intraocular pressure and percentage of reduction of intraocular pressure after 24 months (r = 0.71, p < 0.01).

Conclusion Selective laser trabeculoplasty is safe and effective method for reduction of intraocular pressure in pseudoexfoliation glaucoma patients and should be used more often in this challenging form of glaucoma. Baseline intraocular pressure seems to be reliable predictor of success.

Keywords: selective laser trabeculoplasty; pseudoexfoliative glaucoma; intraocular pressure

САЖЕТАК
Увод/Циље Псевдексфолијативни синдром карактерише абнормалну производњу и накупљање фибриларног, бело-сивог материјала сличног перути у готово свим окуларним структурама. Циљ ове студије био је испитати ефект селективне ласер трабекулопластике код пацијената са псевдексфолијативним глаукомом.

Методе Тридесет два пацијента (47 очију) са медикацном неконтролисаном псевдексфолијативним глаукомом била су укључена у студију. Сви пацијенти нису могли постићи терапијски интраокуларни притисак са максимално толерисаном медикаментном терапијом пре почетка лечења. Селективна ласер трабекулопластика изведена је са око 100 пеца који се не преклапају. Интраокуларни притисак мерео је 1 час, 7 дана, 4 недеље, 3, 6, 12, 18 и 24 месеца након захвата.

Резултати Средњи базни интраокуларни притисак био је 23,45 ммHg (SD = 3,07). Статистички значајно смањење средњег интраокуларног притиска уочено је код свих контрола осим 1 часа након третмана. Средњи интраокуларни притисак након 24 месеца износио је 18,39 ммHg (SD = 1,82). Успех, дефинисан као смањење интраокуларног притиска од базног за више од 20% након 24 месеца, постигнут је код 27 очију (57,45%). Нисмо открели утицај пола и старости на селективне ефекти ласер трабекулопластике код пацијената са псевдексфолијативним глаукомом.

Закључак Селективна ласер трабекулопластика је сигурна и ефикасна метода за смањење интраокуларног притиска код пацијената са псевдексфолијативним глаукомом и требало би је чешће користити у овом изазовном облику глаукома. Чини се да је основни интраокуларни притисак поуздан предиктор успеха.

Кључне речи: селективна ласер трабекулопластика; псевдексфолијативни глауком; интраокуларни притисак

DOI: https://doi.org/10.2298/SARH210828033K Copyright © Serbian Medical Society
INTRODUCTION

Pseudoexfoliation syndrome is systemic disease of the extracellular matrix with primary ocular manifestations. Syndrome is characterized by abnormal production and accumulation of fibrillar, white-gray, “dandruff-like” material in almost all ocular structures. Pseudoexfoliative material is produced by cells of the anterior segment of the eye. This material is insoluble and floats in the aqueous humor, and is most often deposited on the structures of the eye in contact with aqueous humor like: lens, ciliary body, corneal endothelium and trabecular meshwork. In clinical presentation, it is usually seen on pupillary margin, anterior capsule of the lens and on trabecular meshwork. Pseudoexfoliative material can disturb the function of goblet cell in conjunctiva which causes tear film instability and dry eye syndrome. Structure of this material is fibrillar and it contains parts of basal membranes and some enzymes [1, 2, 3].

Accumulation of this material in the trabecular meshwork can lead to its obstruction and to increase of intraocular pressure (IOP). Pigment granulas can be seen in anterior chamber angle and they are probably released from the iris while rubbing on the fibrillar deposits on the lens. Pigment granulas can participate in clogging of trabecular meshwork.

Pseudoexfoliation (PXF) syndrome is the most common cause of secondary glaucoma, although not all patients with pseudoexfoliation syndrome will encounter this disease [1].

It is known that PXF glaucoma is very difficult form of glaucoma to treat [2], with high intraocular pressure and rapid unpredictable progression of the disease [4]. It is quite challenging for treatment because it often responds poorly to medical therapy. Treatment of glaucoma includes: medical, laser and surgical treatment.

Laser trabecuoplasty as a method for lowering intraocular pressure is in use for more than forty years, now. It was first introduces by Wise and Witter in 1979 [5]. At that time argon laser was user for this method, so it was called argon laser trabecuoplasty (ALT). ALT have shown good results in lowering IOP although its mechanism of action was never completely understood. Later it was noticed, that it is often followed by scaring in iridocorneal angle and occurrence of peripheral anterior synechia. This finding limited argon laser trabecuoplasty for only single application in one patient.
First results with selective laser trabeculoplasty in lowering IOP in patients with open angle glaucoma, Park and Latina presented in 1995. This method is in commercial use since 2001 [6]. For this procedure Q-switched, frequency doubled laser with a wavelength of 532 nm is used. Laser beam is directed at trabecular meshwork (TM) and duration of the pulse of laser energy is only 3 ns. Small amount of laser energy released is enough to heat and damage only pigmented cells of trabecular meshwork that absorbs light energy to a greater extent than surrounding non pigmented cells of TM.

The aim of this study was to analyze the effects of selective laser trabeculoplasty on patients with medically uncontrolled PXF glaucoma. We examined the significance of intraocular pressure reduction compared to baseline IOP during follow-up period of 24 months, influence of baseline IOP value to the percentage of reduction, as well as influence of demographic characteristics.

METHODS

In this prospective, nonrandomized, self-controlled, interventional cohort study 32 patients (47 eyes) with medically uncontrolled pseudoexfoliation glaucoma were enrolled to assess the response to SLT. With the approval of institutional Committee on Ethics and according to the tenets of the Declaration of Helsinki, all the patients gave their written consent at the beginning of the study.

All patients could not reach target intraocular pressure with maximal tolerated medical therapy. Patients underwent detailed ophthalmological examination before procedure: Snellen visual acuity, slit lamp examination of anterior segment, gonioscopic examination of anterior chamber angle, optic disc examination and visual field testing which confirmed diagnosis.

The study was conducted at the ophthalmological hospital, “Belgrade ophthalmological center”, Belgrade, Serbia from June 1, 2019 until June 1, 2021. All the procedures were done by one experienced ophthalmologist.

Selective laser trabeculoplasty was performed over 360 degrees of trabecular meshwork.
IOP was measured 1 hour, 7 days, 4 weeks, 3, 6, 12, 18 and 24 months after procedure. Baseline characteristics of all patients were recorded at the beginning of the study. These include: age, gender, diagnosis, baseline IOP, and the number and the type of used medications.

Patient inclusion criteria were intraocular pressure above target IOP with maximal tolerated medical therapy in patients with pseudoexfoliation glaucoma. Patients had to be older than 18 years to participate in the study.

Exclusion criteria were advanced-stage glaucoma; patients who underwent any previous antiglaucoma laser or surgical procedure; eyes with previous anterior segment surgery like cataract extraction within the past 6 months, and patients with baseline IOP > 30mmHg with fully medicated local and per oral antiglaucomatous treatment (carbonic anhydrase inhibitors). Patients who could not be followed for at least 24 months were also excluded and their results were removed.

During four weeks before treatment IOP was measured at least 2 times in all patients in order to get the baseline IOP as a mean value of these measurements. IOP was measured using Goldmann applanation tonometer.

Immediately before treatment, IOP was measured and after that 0.5% solution of apraclonidine was instilled in the treated eye with the aim to prevent IOP spikes [7, 8].

The procedure was performed with topical anesthetic-benoxinate hydrochloride 0.4%. With the patient seated at the laser slit-lamp system, a Goldmann three-mirror goniolens or Latina lens was placed on the eye with methylcellulose 2%.

All eyes were treated with Ellex, Tango® SLT laser (Ellex Medical Pty. Ltd, Adelaide, Australia) a frequency-doubled, Q-switched Nd: YAG laser emitting at 532nm with fixed pulse duration of 3 ns and a spot size of 400 μm. Treatment began at 0.8mJ and was titrated according to the response. If cavitation bubbles appeared the laser energy was reduced by 0.1 mJ until no bubbles formed and treatment was continued at this energy level. If no cavitation bubble was observed, the pulse energy was increased by 0.1 mJ until bubble formation and then decreased as described above. Sometimes higher energy was required for the treatment of the superior, less pigmented angle. Approximately 100 adjacent, but non overlapping, laser spots were placed over 360° of the TM [8].
Immediately after the laser treatment, nepafenac eye drops were administered once in treated eye than three times daily for 3 days. The IOP in the treated eye was measured and recorded 1 hour after surgery. The same preoperative anti-glaucoma medication regimen was continued. Patients were evaluated at 1 hour, 1 week, and at 1, 3, 6, 12, 18 and 24 months. At each visit, the visual acuity and IOP were measured, and slit-lamp examination of the anterior segment was performed. All major and minor complications and complaints were recorded and treated appropriately.

Complete success of treatment was defined as IOP reduction of 20% and more and qualified success reduction of IOP between 10 and 20%.

The data was analyzed using SPSS statistical software (version 22.0) using ANOVA for repeated measures and T test for dependent samples. A P value of less than 0.05 was considered to be statistically significant.

RESULTS

From 47 eyes of 32 patients initially enrolled, twenty five patients (38 eyes) completed the study. Seven patients (9 eyes) were sent for other surgical treatment or to repetition of SLT due to high IOP during follow-up period and they were excluded from the study. Patients that did not come on all follow-ups were also excluded, and their data erased.

Average age of our patients was 73.76 (SD = 5.79) and baseline IOP was 23.13 (SD = 3.06). There were 13 men (21 eye) and 12 women (17 eyes) in our group. Baseline characteristics of included patients are presented in Table 1.

Seven days after the treatment mean IOP was reduced to 18.26 (SD = 2.65). One month after SLT mean IOP dropped to 16.74 (SD = 2.06). Lowest mean IOP was recorded 3 months after treatment and it was 15.84 mmHg (SD = 1.87) or 31.51% reduction from the baseline. After that period mean IOP showed mild but constant raise and 24 months after treatment the mean IOP was 18.03 mmHg (SD = 1.64) (p < 0.01) and that was 5.11 mmHg lower than baseline or 22.07%. It is shown in Table 2 and 3, and Figure 1.
Success of treatment was defined as reduction of IOP of at least 20% from baseline IOP. Eleven eyes did not achieve IOP reduction of 20% after 24 months. When we take into account those 9 eyes that were sent for surgery and eleven eyes that did not achieve IOP reduction of 20% or more it makes 20 out of 47 eyes or 42.55%. Success, after 24 months, was achieved in 27 eyes (57.45%).

Paired-samples T test was used to compare the means of baseline intraocular pressure and IOP 24 months after treatment and difference is highly statistically significant (p < 0.001).

We also investigated the role of baseline IOP values as a predictor of SLT response in patients with pseudoexfoliative glaucoma. There was a strong correlation between mean baseline IOP and mean percentage of reduction after 24 months from treatment (r = 0.71, p < 0.01) (Table 4, Figure 2).

Most significant side effect of SLT was postoperative IOP spike which was noticed in 10 eyes (26.31%) one hour after treatment. In six of them (15.79%) IOP spike was higher or equal with 5 mmHg. After 7 days there were no eyes with IOP higher than baseline. In 11 eyes (28.95%) mild anterior chamber inflammation was present 1 hour after treatment, but at 7 days all eyes were quiet. One patient complained at ocular discomfort, but did not require discontinuation of the treatment. There were no corneal complications.

DISCUSSION

In previous papers selective laser trabeculoplasty was proved to reduce intraocular pressure in primary open angle glaucoma as well as in pseudoexfoliative and pigmentary glaucoma. Although the percentage of reduction was similar in many reports there were some papers that found reduction as high as 40% and others that reported less than 10% [9–18].

In our group of patients with pseudoexfoliative glaucoma, SLT was used as adjunctive treatment and we achieved mean reduction of IOP after two years of 22.07% from mean baseline IOP that was similar to expected values based on earlier papers [19–23]. At the beginning of the study it looked that reduction of IOP was even higher than compared to reduction found in primary open angle glaucoma, and it was more than 30% at three months,
but at 24 months check-up it was the same and even lower than in POAG patients. So, it seems that lowering effect of SLT in pseudoexfoliative glaucoma patients is fading over time. It is possible that the reason for that is continuous releasing of pseudoexfoliative material that is clogging iridocorneal and trabecular tissue. Even though, that initial IOP lowering effect is accomplished, release of pseudoexfoliative material lead to continuous increase in IOP.

As complete success we defined lowering of IOP for at least 20%. We achieved this result in 57.45% of patients after 24 months. At 12 months this result was 65.96% which suggest faster fading of SLT intraocular pressure reduction effect in PXF glaucoma patients. IOP reduction between 10 and 20% we defined as qualified success and it was achieved in 7.89% after 24 months, so success was accomplished in 78.95% of eyes that have finished the study or 63.83% of eyes that entered the study. Sometimes even small reduction of IOP could be significant in reaching target IOP for some patients and delaying or avoiding the need for surgical treatment and value of SLT for this patients should not be underestimated.

We did not find any difference between male and female regarding SLT response. That finding is consistent with other papers [24]. Also we did not find any influence of age on SLT effects.

Comparing all follow ups and mean intraocular pressures it was obvious that after one month we had almost definite results and we thought that one should wait for one month to see if the SLT response was adequate for the patient, but that there was no reason to wait any longer if the result was not satisfactory.

IOP spike was most significant side effect that occurred after treatment. It was noticed in 26.31% of eyes and in 15.79% of eyes it was higher or equal with 5 mmHg. Some mild anterior chamber inflammation was present in 28.95% of eyes one hour after treatment. At 7 days follow-up there were no eyes with IOP higher than baseline and all eyes were quiet with no anterior chamber inflammation. This suggest that SLT in this group of patients is quite safe method and with no significant side effects. This results was similar with some other studies [25, 26, 27].

Our study confirmed that higher baseline IOP predicts higher hypotensive response and higher percentage of IOP reduction from baseline [28, 29].
In this group we did not aim for reduction in number of medication used because all patients were on maximally tolerated medical therapy and did not reach target IOP and we were looking for additional reduction of IOP, so mean number of medications did not change before and after the study.

CONCLUSION

Selective laser trabeculoplasty is very effective in lowering intraocular pressure in medically uncontrolled patients with pseudoexfoliative glaucoma and should be used more readily in this challenging form of glaucoma. Also it appears that effect of selective laser trabeculoplasty on those patients fades away with time. Intervention is safe and not accompanied with significant side effects. Baseline intraocular pressure seems to be reliable predictor of intraocular pressure lowering effect. Also it looks like that after one month definite intraocular pressure lowering results can be estimated.

Conflict of interest: None declared.
REFERENCES

Table 1. Baseline characteristics of the patients

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Male</th>
<th>Female</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number (%)</td>
<td>Patients</td>
<td>13 (52)</td>
<td>12 (48)</td>
</tr>
<tr>
<td>Eyes</td>
<td>21 (55.26)</td>
<td>17 (44.74)</td>
<td>38</td>
</tr>
<tr>
<td>Age (years)</td>
<td>Mean</td>
<td>75.19</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>5.19</td>
<td>6.14</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>67</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>82</td>
<td>83</td>
</tr>
<tr>
<td>Base IOP</td>
<td>Mean</td>
<td>23.14</td>
<td>23.12</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>2.89</td>
<td>3.35</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>29</td>
<td>30</td>
</tr>
</tbody>
</table>

IOP – intraocular pressure; SD – standard deviation; Min – minimal value; Max – maximal value
Table 2. Intraocular pressure (IOP) values over time (mm Hg)

<table>
<thead>
<tr>
<th>IOP values</th>
<th>Means</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>23.13</td>
<td>3.06</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td>1 hour</td>
<td>22.74</td>
<td>4.42</td>
<td>14</td>
<td>33</td>
</tr>
<tr>
<td>7 days</td>
<td>18.26</td>
<td>2.65</td>
<td>15</td>
<td>23</td>
</tr>
<tr>
<td>1 month</td>
<td>16.74</td>
<td>2.06</td>
<td>12</td>
<td>21</td>
</tr>
<tr>
<td>3 months</td>
<td>15.84</td>
<td>1.87</td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td>6 months</td>
<td>16.37</td>
<td>2.01</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>12 months</td>
<td>16.95</td>
<td>1.74</td>
<td>13</td>
<td>21</td>
</tr>
<tr>
<td>18 months</td>
<td>17.26</td>
<td>1.81</td>
<td>12</td>
<td>21</td>
</tr>
<tr>
<td>24 months</td>
<td>18.03</td>
<td>1.64</td>
<td>14</td>
<td>21</td>
</tr>
</tbody>
</table>
Table 3. Intraocular pressure (IOP) reduction over time

<table>
<thead>
<tr>
<th>Time</th>
<th>IOP reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm Hg</td>
</tr>
<tr>
<td>1 hour</td>
<td>0.39</td>
</tr>
<tr>
<td>7 days</td>
<td>4.87</td>
</tr>
<tr>
<td>1 month</td>
<td>6.39</td>
</tr>
<tr>
<td>3 months</td>
<td>7.29</td>
</tr>
<tr>
<td>6 months</td>
<td>6.76</td>
</tr>
<tr>
<td>12 months</td>
<td>6.18</td>
</tr>
<tr>
<td>18 months</td>
<td>5.87</td>
</tr>
<tr>
<td>24 months</td>
<td>5.11</td>
</tr>
</tbody>
</table>
Table 4. Correlation between baseline intraocular pressure (IOP) and reduction percentage

<table>
<thead>
<tr>
<th></th>
<th>Baseline IOP</th>
<th>Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline IOP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>1</td>
<td>0.710**</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td></td>
<td>0.000</td>
</tr>
<tr>
<td>N</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>Reduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>0.710**</td>
<td>1</td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>38</td>
<td>38</td>
</tr>
</tbody>
</table>

Correlation significant – p < 0.01
Figure 1. Mean intraocular pressure (IOP) values during the follow-up of 24 months
Figure 2. The influence of baseline intraocular pressure (IOP) on selective laser trabeculoplasty reduction percentage – significant correlation ($r = 0.71$, $p < 0.01$)