Left breast radiotherapy – the impact of heart and LAD doses to cardiovascular diseases developed eight years after treatment

Радиотерапија леве дојке – утицај доза на срце и леву предњу десцедентну артерију и развој кардиоваскуларне болести осам година након третмана

1University of Novi Sad, Faculty of Sciences, Department of Physics, Novi Sad, Serbia;
2Institute of Oncology Vojvodina, Radiotherapy Department, Sremska Kamenica, Serbia;
3University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia;
4Institute of Cardiovascular Diseases Vojvodina, Cardiology Clinic, Sremska Kamenica, Serbia;
5Budapest University of Technology and Economics, Institute of Nuclear Techniques, Budapest, Hungary

Received: March 28, 2021
Revised: March 12, 2022
Accepted: March 15, 2022
Online First: March 24, 2022
DOI: https://doi.org/10.2298/SARH210328031P

Accepted papers are articles in press that have gone through due peer review process and have been accepted for publication by the Editorial Board of the Serbian Archives of Medicine. They have not yet been copy-edited and/or formatted in the publication house style, and the text may be changed before the final publication.

Although accepted papers do not yet have all the accompanying bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: the author’s last name and initial of the first name, article title, journal title, online first publication month and year, and the DOI; e.g.: Petrović P, Jovanović J. The title of the article. Srp Arh Celok Lek. Online First, February 2017.

When the final article is assigned to volumes/issues of the journal, the Article in Press version will be removed and the final version will appear in the associated published volumes/issues of the journal. The date the article was made available online first will be carried over.

*Correspondence to:
Borislava PETROVIĆ
University of Novi Sad, Faculty of Sciences, Vojvodina Institute of Oncology, Radiotherapy Department, 21000 Sremska Kamenica, Serbia
E mail: borislava.petrovic@df.uns.ac.rs
Left breast radiotherapy – the impact of heart and LAD doses to cardiovascular diseases developed eight years after treatment

Радиотерапија леве дојке – утицај доза на срце и леву предњу десцедентну артерију и развој кардиоваскулярне болести осам година након третмана

SUMMARY
Introduction/Objective Left breast cancer patients undergoing radiotherapy are at higher risk of cardiovascular diseases (CVD), as a partial volume of the heart is anatomically close to target volume. This may cause cardiovascular diseases in the years following cancer treatment. The aim of this work was to develop a scoring system which identifies patients with increased risk of development of cardiovascular diseases, as consequence of left breast irradiation.

Methods The patients followed up in this study were treated during 2009. Eight years later, they were invited to participate in a study where they underwent a cardiology evaluation. Their current condition was statistically correlated to the doses received by their heart and left anterior descendant (LAD) artery.

Results Out of 114 patients, thirty-one women were evaluable for cardiology assessment. Out of these 31 subjects, six women were with a history of CVD before cancer treatment. Four women never developed any kind of heart associated disease, while in the other 27, newly onset CVD were diagnosed ranging from hypertension to myocardial infarction, strongly positively correlated to doses to heart and LAD (p = 0.003). Severity of developed cardiovascular toxicity was formulated through the correlation of mean heart and mean LAD doses with cardiovascular diseases developed in form of the scoring system.

Conclusion The doses to critical organs depend on patient anatomy and technique of irradiation. The cardiovascular complications are proven as consequence of radiotherapy. Scoring system based on doses received by heart and LAD is reliable tool in predicting CVD.

Keywords: cardiotoxicity; computer-assisted radiotherapy planning, left-sided breast cancer; radiotherapy

САЖЕТАК
Увод/Циљ. Пацијенткиње оболеле од карцинома леве дојке, лечене радиолошком терапијом, су у већем ризику од настанка кардиоваскулярних болести (КВБ), с обзиром да је анатомском положајем део срца често у непосредној близини тремираних регија, што у годинама након третмана, може да изазове појаву кардиоваскулярних болести. Циљ овог рада био је развој скоринг система који идентификује пацијенте са повећаним ризиком од развоја кардиоваскулярних болести, као последицу зрачења леве дојке.

Методе. Пацијенткиње које су праћене током ове студије зрачене су током 2009. године. Осам година касније, позване су да учествују у студији, током које су прегледане од стране кардиолога. Њихов налаз корелиран је са дозама које су током радиолошке терапије примиле срце и лева предња десцедентна коронарна артерија (ЛАД).

Резултати. Од 114 позваних пацијенткиња којима је током 2009. године зрачена лева дојка, тридесет једна пацијенткиња се одазвала позиву на кардиолошки преглед. Од овог броја, шест пацијенткиња је имало кардиоваскулярну болест пре лечења малигне болести. Четири жене нису накад развиле ни једну кардиоваскулярну болест до кардиолошког прегледа, док су осталih 27 пацијенткиња развиле бар једну од КВБ, од хипертензије до инфаркта миокарда. Тежина кардиоваскулярне болести је јако позитивно корелисана са средњом дозом на срце и средњим дозом на ЛАД (p = 0.003).

Закључак. Доза на критичне оргane зависи од анатомије пацијента али и од радиотерапијске технике која је спроведена. Кардиоваскуларне компликације су доказана последица зрачења леве дојке. Тежина компликација зависи од односа између доза на срце и ЛАД изражена кроз скоринг систем. Скоринг систем заснован на дозама које примају срце и ЛАД је поуцен у предицији развоја КВБ.

Кључне речи: кардиотоксичност; компјутерско планирање радиотерапије, карцином леве дојке; радиотерапија
INTRODUCTION

Breast cancer is a global health care problem worldwide and in Republic of Serbia: 26% of all new cancer cases in Serbian female population were breast cancer patients, where approximately half of them are left-breast patients [1, 2].

Cardio-vascular diseases (CVD) are the first cause of death worldwide according to the World Health Organization (WHO). Together, malignant and cardiovascular diseases are the cause of 3/4 of all deaths (both sexes, all ages) in Serbia, where cardiovascular diseases are responsible for 52.1% and cancer for 22.8% of all deaths [3]. Incidences of both diseases are rising.

Radiation therapy of the breast is known to contribute to cardiovascular diseases, and has been reported as a possible cause of cardiac mortality since 1950s [4].

Due to increased reporting on correlation between cancer therapy and cardiovascular diseases, the European Society of Cardiology and International Atomic Energy Agency have published documents on the cardiovascular toxic effect of cancer therapy, including radiotherapy and chemotherapy [5,6] summarizing evidence. Increase in number of patients receiving chemotherapy and radiotherapy, earlier detection of disease and longer survival, lead to an increase in the number of new patients in cardiology, and may pose a global future problem.

The implementation of modern radiation therapy techniques have significantly lowered the dose to the heart and to the left descending coronary artery (LAD) both often very close to target volume. The usual doses to these two structures are far above 0.5 Gy, stated as limit in International Commission on Radiological Protection (ICRP 118).

The objective was to assess the toxic effect to these structures in our patient set, from radiotherapy aspect. The constraints given in the literature were very limited, so we conducted a retrospective analysis of treatment plans and patient conditions, to determine scoring system based on threshold values of mean heart (MHD) and mean LAD (MLAD) dose that would have clinical significance for development of CVDs.
METHODS

The subjects of this study were patients with left breast cancer treated during the year 2009. The Radiotherapy department of our Institute was equipped at that time with two linear accelerators, by Varian Medical Systems, Clinac series. The CT simulator was manufactured by Siemens. The treatment planning system XIO used was manufactured by Computerized Medical Systems (nowadays Elekta), and the dose was calculated by the convolution algorithm. Treatment plans were generated using a 6 MV beam, which was verified according to the IAEA recommendations [7, 8].

The treatment planning strategy at that time was two opposed tangential fields with enhanced dynamic wedges [9], and sub-fields.

Patient were immobilized on the Wing board® or Thorawedge® (Civco). Radiation oncologists delineated the target volume (breast), both lungs and the heart. The LAD was not delineated at the time of treatment. Dose prescribed to the center of the breast (ICRU reference point) was 50-60 Gy, with or without boost and supraclavicular lymph nodes, depending on the type and stage of the disease. Treatment plans were evaluated based on dose volume histograms. Patient position was verified before the first fraction on a portal imaging devices and then checked weekly.

The patients in this study were invited eight years after cancer treatment, to a clinical cardiology examination. Out of the 114 patients invited, thirty-one attended examinations, while others either did not answer, or members of the family reported their death (3 patients). Out of the subset of 31 women who responded to the cardiology examination and finally entered the study, 27 women were confirmed with CVD and only four women had never had any kind of CVD.

Patient’s cardiology assessment consisted of a physical examination, an electrocardiogram, an echocardiography (EHO), an exercise stress test and included further diagnostic and therapeutic procedures. EHO evaluated atherosclerotic changes of aortic walls, aortic valves, left atrium dimension and volume; mitral valve; left ventricle walls and dimension, systolic (ejection fraction – EF) and diastolic function; cavities of the right heart and systolic pressure and systolic function of the right ventricle; pulmonary artery and valve as well as pericardium. The stress tests were conducted for patients with symptoms of coronary
artery disease or an irregular heart rhythm (arrhythmia). The overall conclusion of cardiologist for each patient was included in data analysis.

At the time of treatment planning in 2009, the LAD artery was not contoured. Since LAD cannot be visualized reliably on CT images made for treatment planning, radiation oncologists delineated the LAD structure on the de-archived plans according to guidelines and clinical atlases [10,11], and the heart. The physicists re-calculated treatment plans by the clinical version of the treatment planning system XIO to obtain doses to these two new structures (heart and LAD).

Figures were generated by software Origin Pro 8.0 (Northampton, MA, USA).

The patients treated at the hospital are treated according to the approved clinical radiation therapy protocols, by the Ethical board. Every patient signed approval for their treatment, and the cardiological study was purely volunteered. Patients examined by cardiologists got their cardiologist report, and also signed approval before any treatment was initiated based on findings from this study.

RESULTS

The patients were identified from the hospital registry, with their clinical data.

There was in total 114 left breast cancer patients irradiated during 2009, of which 92 could be successfully de-archived 7 years after treatment, and returned to the treatment planning system, without any errors during the de-archiving procedure. Out of this number, 86 patients could be recalculated without an error in the treatment planning system. Six plans had unknown calculation error. Finally, 31 patients responded to the appointment with cardiologist at the time when study was conducted and were included in dose/CVD evaluation.

At the time of the treatment, age distribution was as follows: there were no patients younger than 30 and older than 80. Four patients (3.5%) of 114 patients were in their 30s, 28% of patients in their 40s, 30.7% patients in their 50s, 34.3% patients in their 60s and 3.5% of
patients in their 70s. The mean age of female left breast patients during the year 2009 was 60.9 years.

The distribution of diagnosis was as follows: most of the 114 patients had ductal carcinoma (55.3%), medullar carcinoma was present in 4.4% patients, lobular carcinoma in 9.6%, mixed type in 3.5%, tubular, micropapillary and mucinous in 0.9%. In 28 patients (24.6%) there were no data on the type of carcinoma.

When the tumor grade was evaluated in the group, there were 11% of patients with G1 grade, 28% of patients with G2 grade, 13% of patients with G3 grade, while no data was present for 52% of the patients.

There were no records in the hospital database about CVD risk factors associated with heart diseases prior to cancer treatment.

The chemotherapy drugs before, during and after radiation therapy were: 32% patients received two drug combination, mainly FAC and Tamoxifen, 6% received 3 drugs, 0.9% had 4 drugs, while one drug was received by 32% of patients, mainly Tamoxifen. 3.5% did not have chemotherapy at all, while there was no data for 24.5% of the patients in the system (most likely received chemotherapy in local hospitals). The chemotherapy agents used were: FAC VI, AC, CMF, Tamoxifen, Docetaxel, Paclitaxel, Bevacizumab, Trastuzumab, Goserelin. All medicines listed (FAC, AC, CMF, Tamoxifen, Docetaxel, Paclitaxel, Bevacizumab, Trastuzumab, Goserelin) have some degree of proven cardiotoxic effect [4,12]. It has been confirmed in literature that Tamoxifen cannot be associated with an increased incidence of heart diseases [13] but is correlated to an increased incidence of venous thrombosis and stroke [14].

Radiotherapy treatment

Prescribed doses to the breast were 60 Gy (66.6%) and 50 Gy (33.4%). The prescription to the supraclavicular region was 50 Gy (36%), while 20.2% of patients received an additional boost to the breast (10-12 Gy).
There were 58% patients who were treated to the breast only, 15% breast with boost, 25% breast with supraclavicular field (SC) and 2% breast, boost and SC.

Calculated doses to heart and LAD and volumes are given in Table 1. The mean doses to the heart volume ranged among patients between 0.3 Gy and 62.4 Gy, with average of mean heart dose of 4.6 Gy. The mean volume of the heart was 727 cm³. As for the left lung, the maximum dose was 65.5 Gy (mean maximum 59.6Gy), and average mean dose in the group 6.8Gy. The left anterior descending artery (LAD), which was newly delineated, after the de-archiving of the treatment plans, received maximum of 62.1 Gy while the mean dose was 21.6Gy. The mean volume of delineated LAD was 5.2 cm³. The trend of maximum doses to LAD and heart, as well as lungs follow the increase of mean doses: higher the mean dose-higher the maximum.

Maximum heart distance (distance from radiation field edge to heart edge) and maximum lung distance (distance from radiation field edge to chest wall) were measured. The heart entered the irradiated volume by a mean length of 3.5 cm (but was shielded by MultiLeaf Collimator -MLC), while the left lung was included with a mean of 3.7 cm (also shielded by MLC). The heart was exposed to open beam by a mean value 1.4 cm. Measurements were done from the beam edge and presented in the Figure 1.

Cardiovascular evaluation

Thirty-one patients responded to the appointment with cardiologist. Out of this number, only four women never had any kind of heart associated diseases, while in other 27 women CVDs found were ranging from simpler hypertension to very complicated myocardial infarction (in total 3 patients). Out of the 31 evaluable patients, 6 patients had had a history of cardiovascular diseases before the treatment of breast cancer. Additionally eight patients (26%) developed some form of cardiovascular disease during the first 5 years after treatment (phlebothrombosis, cardiomyopathy and MI).

The data of all examined patients after cancer treatment are presented in Table 2.
The mean heart dose of examined patients and their mean LAD dose were correlated on Figure 2. The positive strong correlation ($r = 0.7772$, $p < 0.00001$) between mean heart dose and mean LAD dose was found.

Cardiovascular complications found in analyzed group were as follows: myocardial dysfunction and heart failure, coronary artery disease, valvular disease, arrhythmias, arterial hypertension, thromboembolic disease, peripheral vascular disease and stroke, pulmonary hypertension and pericardial complications.

Patients were graded according to the cardiotoxicity grading system given in literature—measured ejection fraction (EF) and other findings [14].

According to severity of CVD we divided all patients in four groups: Group 1- venous disease and/or hypertension, group 2- group 1 + arrhythmia or coronary disease (angina pectoris), group 3- group 2 + hypertrophy and/or cardiomyopathy, group 4-group 3 + stenocardia/myocardial infarction. In the next step, we defined threshold values for MHD and MLAD for each group. Analyzing given data, we concluded that the results show a scoring system. Finally, after correlation od CVD group and mean doses values, our results have showed that patients can be divided in 4 scores (1-4) which is presented in Table 3.

Score 1 were patients with MHD < 2Gy and MLAD < 10Gy; score 2- patients with MHD < 3Gy and MLAD < 20 Gy; score 3: patients with MHD < 5 Gy and MLAD < 25 Gy; score 4: patients with MHD > 5 Gy and MLAD > 25 Gy. Our results showed that patients with MHD < 2Gy and MLAD < 10Gy had venous disease and/or hypertension; patients with MHD < 3Gy and MLAD < 20 Gy developed venous disease and/or hypertension plus arrhythmia or coronary disease (angina pectoris); patients with MHD < 5 Gy and MLAD < 25 Gy developed venous disease, hypertension, arrhythmia, coronary disease (angina pectoris) and hypertrophy and/or cardiomyopathy; and patients with MHD > 5 Gy and MLAD > 25 Gy developed all previous diseases plus stenocardia and/or myocardial infarction, as shown in Table 3. The scoring system developed in this work is based on possible complication severity correlated to doses received by critical organs in our data, ranging from 1 to 4, and correlates with the values of doses to heart and LAD found in literature [11].
The positive correlations between mean doses to heart and CVD developed \((r = 0.9803, \ p < 0.003) \), as well as MLAD and clinical CVD developed \((r = 0.9803, \ p < 0.003) \), significant at \(p < 0.05 \), was found on Figure 4.

At the time of treatment planning of these patients, only QUANTEC parameters were available for treatment plan evaluation. According to QUANTEC, heart and its pericardium should be irradiated within following limits: mean dose \(< 26\) Gy (our results in cardiologically examined group was \(4.6\) Gy), \(V_{30Gy} < 46\%\) (our result \(3.4\%\)), and \(V_{25Gy} < 10\%\) (our result \(4\%\)). LAD dose is not mentioned in QUANTEC. Lung \(V_{20Gy}\) according to QUANTEC should be \(< 30\%\) (our result \(10.4\%\)) and mean dose with least complication probability \(7\) Gy (our result \(6.8\) Gy). Generally speaking, the average treatment planning dosimetry results in treatment plans were far below the indicated upper limits for long term cardiac or pulmonary complication probability, but contrary to the stated QUANTEC parameters, some form of CVD complications developed in majority of patients.

DISCUSSION

Breast cancer as the most common cancer in women worldwide, is curable in early stages thus survival can be long term. Since radiation therapy is an effective tool in the treatment of breast cancer, where structures in the heart, such as the LAD, are exposed to radiation, sparing the heart and its structures becomes significant issue in breast treatment planning.

It is evident from literature that the risk of major cardiovascular events becomes more pronounced 5 years after radiation therapy and continues to increase even for 3 more decades [15, 16]. Other studies reported cardiac events 10 years after initial radiotherapy treatment. The worst-case scenario is when irradiation worsens an already present CVD, or accelerates its appearance in cases where risk factors are present. Our results are in line with these findings: out of 31 examined patients 3 had myocardial infarction and all of them had previous CVD before radiotherapy.

Between treatment and cardiology assessment, three patients had died, others could not be reached or could not show up for the appointment, while only \(1/3\) of recalculated and \(1/4\) of
the total number of left breast patients treated in 2009, actually responded to cardiology
evaluation.

There is evidence of strong correlation of dose distribution to the heart with the later
developing cardiac effects [16] which defines the increasing risk of major cardiac effect by
MHD increase by 7.4% per 1 Gy of MHD. The main strength of this paper is that it clearly
correlates the doses received by the heart and LAD, to the cardiovascular complications
developed after treatment. The cardiology assessment data of cancer survivors are now used as
reference, for treatment plan strategy and evaluation. The results presented in our study
correlate with published data [11, 17].

The most frequent cardiac problem reported during radiotherapy in the literature is acute
pericarditis, pericardial effusion and arrhythmia [14]. In our investigation, none of our patients
have reported cardiac problems during their treatment (according to hospital database reports).
However, from the database of our cardiovascular clinic, there were 2 patients who requested
clinical appointment immediately after radiation therapy and 8 patients in the following 5 years.

During radiotherapy treatment planning and delivery, special attention should be paid to
the use of cardiac shielding opportunities and modern techniques [18], such that the dose
volume histogram reflects the need for sparing the heart and heart structures. The
implementation of deep inspiration breath hold (free or assisted) is the easiest way to naturally
shield the heart by increasing the volume of air between the heart and chest wall where the
tangential field edge is positioned [19, 20, 21], by the use of arc techniques (VMAT) [22, 23]
or advanced robotic accelerators. The optimal option for a significant decrease of dose to both
lungs and heart is prone positioning but also use of immobilizing devices dedicated for both
prone and supine breast radiotherapy [23, 24]. Assisted voluntary breath hold (ABC, Elekta),
VMAT and both prone and supine breast irradiation are now available forms of treatment at
our clinic.

Although all dosimetry parameters from the DVH of treatment plans of examined
patients were far below any clinically known limitation, it is clear that patient’s heart and LAD
may be severely damaged by radiation, especially if previous cardiovascular disease was
registered [24]. Our results also confirm these findings. Severity degree of cardiovascular
disease can be predicted according to the mean heart dose and mean LAD artery dose together,
as we did in this work through the scoring system generated, but more detailed constraints are needed [25, 26]. Patients treated with radiotherapy for left-sided breast cancer, should remain in cardiology follow-up to diagnose possible cardiotoxicity [27].

The limitation of the current study is limited number of patients. Out of 114 initially selected patients, only 31 entered the final analysis. Definitive conclusions should be made after conducting prospective well-designed trial with more patients included.

The management of cardio-oncology patients requires a multidisciplinary approach to provide optimal care for patients. In that respect, these specialties will soon have to bring about new joint protocols, on management of cardio-oncology patients [28]. Propositions on management of cardiac toxicity are still under development and additional studies and research are needed [29] but it is recognized that a model predicting cardiology complication due to therapy is needed [30]. The scoring system we proposed here serves in our institution as a predictor of CVD complications.

ACKNOWLEDGEMENT

This work was funded and supported by two scientific grants of the Provincial Secretariat for Science and Technological Development of the Autonomous Province of Vojvodina, Serbia, (No.114-451-2634/2015 and 114-451-2076/2016).

Conflict of interest: None declared.
REFERENCES

2. Registar za rak (Cancer registry Vojvodina), Available from: http://www.onk.ns.ac.rs/

3. Registar za rak (Cancer registry Vojvodina), Available from: http://www.onk.ns.ac.rs/

DOI: https://doi.org/10.2298/SARH210328031P Copyright © Serbian Medical Society

Table 1. Doses to heart, LAD, and left lungs (min., max., and mean dose per patient and per cardiologically assessed cohort)

<table>
<thead>
<tr>
<th>Mean dose range of heart (Gy)</th>
<th>Number of patients</th>
<th>Avg. of mean dose (Gy)</th>
<th>Avg. of min. dose (Gy)</th>
<th>Avg. of max. dose (Gy)</th>
<th>Avg. volume (cm³)</th>
<th>Avg. of mean dose (Gy)</th>
<th>Avg. of min. dose (Gy)</th>
<th>Avg. of max. dose (Gy)</th>
<th>Avg. volume (cm³)</th>
<th>Avg. of mean dose (Gy)</th>
<th>Avg. of min. dose (Gy)</th>
<th>Avg. of max. dose (Gy)</th>
<th>Avg. volume (cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–2 Gy</td>
<td>7</td>
<td>1.58</td>
<td>0.18</td>
<td>46.92</td>
<td>654.2</td>
<td>8.92</td>
<td>0.72</td>
<td>33.22</td>
<td>4.73</td>
<td>4.88</td>
<td>0.05</td>
<td>59.46</td>
<td>1321.42</td>
</tr>
<tr>
<td>2–4 Gy</td>
<td>8</td>
<td>3.07</td>
<td>0.27</td>
<td>55.94</td>
<td>708.9</td>
<td>21.56</td>
<td>0.95</td>
<td>53.97</td>
<td>5.23</td>
<td>6.22</td>
<td>0.11</td>
<td>60.46</td>
<td>1172.63</td>
</tr>
<tr>
<td>4–6 Gy</td>
<td>8</td>
<td>4.92</td>
<td>0.32</td>
<td>55.8</td>
<td>652.13</td>
<td>25.39</td>
<td>1.18</td>
<td>55.11</td>
<td>4.42</td>
<td>8.03</td>
<td>0.18</td>
<td>60.71</td>
<td>1208.6</td>
</tr>
<tr>
<td>6–14 Gy</td>
<td>8</td>
<td>8.82</td>
<td>0.7</td>
<td>56.6</td>
<td>897.4</td>
<td>30.57</td>
<td>2.77</td>
<td>55.65</td>
<td>6.34</td>
<td>8.02</td>
<td>0.3</td>
<td>57.9</td>
<td>1176.8</td>
</tr>
<tr>
<td>Data for all patients</td>
<td>31</td>
<td>4.6</td>
<td>0.37</td>
<td>53.81</td>
<td>727.17</td>
<td>21.63</td>
<td>1.4</td>
<td>49.49</td>
<td>5.18</td>
<td>6.78</td>
<td>0.16</td>
<td>59.63</td>
<td>1219.8</td>
</tr>
</tbody>
</table>

Avg. – average; LAD – left anterior descending artery
Table 2. Cardiovascular diseases (CVD) in examined patients and complications developed eight years after treatment

<table>
<thead>
<tr>
<th>Cardiovascular diseases (31 patients)</th>
<th>No. of patients with CVD*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
<td>14</td>
</tr>
<tr>
<td>Angina pectoris</td>
<td>3</td>
</tr>
<tr>
<td>Mitral valve insufficiency</td>
<td>2</td>
</tr>
<tr>
<td>Aortic valve stenosis</td>
<td>1</td>
</tr>
<tr>
<td>Tricuspid valve insufficiency</td>
<td>2</td>
</tr>
<tr>
<td>Venous disease</td>
<td>2</td>
</tr>
<tr>
<td>Hypertrophic cardiomyopathy</td>
<td>6</td>
</tr>
<tr>
<td>Chest pain (Stenocardia)</td>
<td>3</td>
</tr>
<tr>
<td>Phlebothrombosis</td>
<td>3</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>3</td>
</tr>
</tbody>
</table>

*Some patients had more than one complication
Table 3. Scoring system developed based on complications and dose received by critical organs

<table>
<thead>
<tr>
<th>Score</th>
<th>CVD complication groups</th>
<th>Mean heart dose (Gy)</th>
<th>Mean LAD artery dose (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Group 1: venous disease and/or hypertension</td>
<td>x < 2</td>
<td>y < 10</td>
</tr>
<tr>
<td>2</td>
<td>Group 2: Group 1 plus arrhythmia or coronary disease (angina pectoris)</td>
<td>2 < x < 3</td>
<td>10 < y < 20</td>
</tr>
<tr>
<td>3</td>
<td>Group 3: Group 2 plus hypertrophy and/or cardiomyopathy</td>
<td>3 < x < 5</td>
<td>20 < y < 25</td>
</tr>
<tr>
<td>4</td>
<td>Group 4: Group 3 plus stenocardia/myocardial infarction</td>
<td>x > 5</td>
<td>y > 25</td>
</tr>
</tbody>
</table>

LAD – left anterior descending artery; x – mean heart dose (Gy); y – mean LAD artery dose (Gy);

CVD – cardiovascular diseases
Figure 1. Beam’s eye view of the heart (A) and measurements of maximum heart and lung distance (B)
Figure 2. Correlation of mean heart dose to mean left anterior descending artery (LAD) dose for examined patients
Figure 3. Cardiology complications developed in the examined group of 31 patients.
Figure 4. Correlation of the mean heart dose, mean left anterior descending artery (LAD) dose in the group and cardiovascular complication scoring system.