Neuropsychological manifestations in rheumatic patients with chronic pain

Неуропсихолошке манифестације код реуматолошких болесника са хроничним болом

Snežana Tomašević-Todorović¹, Tatjana Nožica-Radulović², Tamara Popović², Saša Milićević³, Damjan Savić⁴, Tijana Spasojević¹, Ksenija Bošković⁵

¹University of Novi Sad, Faculty of Medicine, Clinical Centre of Vojvodina, Clinic for Medical Rehabilitation, Novi Sad, Serbia;
²University of Banja Luka, Faculty of Medicine, Dr Miroslav Zotović Institute for Physical Medicine and Rehabilitation, Department of Rheumatology, Banja Luka, Republic of Srpska, Bosnia and Herzegovina;
³University of Pristina – Kosovska Mitrovica, Faculty of Medicine, Kosovska Mitrovica, Serbia;
⁴Clinic for Medical Rehabilitation, Clinical Centre of Vojvodina, Novi Sad, Serbia;
⁵University of Novi Sad, Faculty of Medicine, Special Hospital for Rheumatic Diseases, Novi Sad, Serbia

Accepted papers are articles in press that have gone through due peer review process and have been accepted for publication by the Editorial Board of the Serbian Archives of Medicine. They have not yet been copy-edited and/or formatted in the publication house style, and the text may be changed before the final publication.

Although accepted papers do not yet have all the accompanying bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: the author’s last name and initial of the first name, article title, journal title, online first publication month and year, and the DOI; e.g.: Petrović P, Jovanović J. The title of the article. Srp Arh Celok Lek. Online First, February 2017.

When the final article is assigned to volumes/issues of the journal, the Article in Press version will be removed and the final version will appear in the associated published volumes/issues of the journal. The date the article was made available online first will be carried over.

Correspondence to:
Damjan SAVIĆ
Clinic for Medical Rehabilitation, Clinical Centre of Vojvodina, Hajduk Veljkova 1–5, 21000 Novi Sad, Serbia
E mail: damjan.savic@yahoo.com
INTRODUCTION

Pain is an unpleasant and complex sensory and emotional experience [1]. A mutual interaction between pain and cognitive processing was determined [1]. Pain impairs cognitive functioning, while cognitive functioning may reduce the level of pain perception [1].
Chronic pain and depressive symptoms are often associated clinically, and together they make treating patients difficult. Depressive symptoms could prolong duration of pain as well as increase the intensity of pain [2].

Depression and anxiety are psychiatric disorders which could be associated with rheumatoid arthritis (RA), osteoarthritis (OA), and fibromyalgia (FA). The explanation for this association could be a biological, possibly cytokine-related, or it can be explained by prolonged negative impact of medical condition on mental health of patient [3].

Cognitive impairment is defined by memory loss, difficulties in learning new things, solving problems, decision making or problems with concentration. There is evidence that RA influences cognitive processing [4].

Patients with chronic pain and FM have deficits in working memory [5].

Several studies shown the high level of affective disorders in patients with chronic pain [6]. Severe depression is prevalent among patients with chronic pain. With the development of pain into a chronic condition, disorders such as anxiety, anhedonia, sleep disorders, cognitive impairments, and suicide may occur along with negative emotional states [6].

Pain, anxiety, and depression may impair work ability in different chronic rheumatic diseases [7]. There is association of chronic pain and neurocognitive impairment [7]. The pain may cause an emotional distress, which also contribute to reduce patient ability to cope with chronic pain self-management as well as with global functioning [7]. However, it is not easy to define the relationship between pain and neurocognitive impairment. There is possibility that pain could cause cognitive impairment or vice versa, that cognitive impairment is associated with higher risk of chronic pain. [7]

The challenges of chronic disease could potentially be decreased, and patient-oriented care could be improved by interventions focused on the symptoms. To adequately inform clinical practice, additional studies of treatment interventions are necessary. Continued workplace engagement in patients with chronic health conditions could be supported by further improvement of workplace accommodation and other such interventions [8].

METHODS

The study included 110 (40 with RA, 40 with OA, 30 with secondary FM) (82 female, 28 male) patients with chronic pain. The control group consisted of 30 healthy subjects (CO
The research was started in April of 2021 and finished in November of 2021, in the Special Hospital for Rheumatic Diseases, Novi Sad. RA group satisfied the criteria for the diagnosis of RA of American College of Rheumatology Association (2010 ACR/EULAR criteria) [9], FM group met the modified ACR criteria [10], and OA group met ACR criteria [11, 12, 13]. Exclusion criteria were: neurological and psychiatric diseases, hearing impairment, dementia, head trauma, any use of psychoactive substances and antidepressants at least a month before the study. The data from history, clinical examination, and questionnaires were used in study. The following parameters were collected in RA group: joint pain defined by a visual analogue scale (VAS) of 0-100 mm, painful and swollen joint count, erythrocyte sedimentation rate, and Disease Activity Score (DAS 28) which divided patients in two groups (RA-MDA Medium Disease activity - DAS 28 > 3.2 < 5.1; and RA-HDA (High Disease activity - DAS 28 > 5.1). The test for evaluation of emotional manifestations, Spielberger’s anxiety test (Spielberger Trait Anxiety Inventory State and Trait), was applied for determination of anxiety, that includes questionnaires STAI-S and STAI-T for standardized measurement of current and general anxiety. A score below or equal to 30 points defines a low level of anxiety, while a score of 31-44 indicates a moderate level and a score above 45 represents a high level of anxiety. Beck’s depression scale (Beck’s Depression Inventory-BDI) was used for evaluation of depression. BDI total score defines the severity of depression. The scores above 30 imply severe clinical depression. Wechsler Memory Scale (WBsp Form 1) was used to detect verbal and non-verbal memory functioning with correction for the age group.

The study has been approved by the Ethics Committee of the Special Hospital for Rheumatic diseases, Novi Sad, Serbia (ethical approval number 14/28-5/1-21).

Statistical methods

The descriptive statistics measures were applied as follows: mean, frequency, measures of variation. Parametric (student t-test) and nonparametric (Mann-Whitney test, chi-square test) were used to compare two groups. The analysis of variance ANOVA and Kruskal-Wallis test was used to compare three or more groups. Pearson correlation coefficient was used for correlation of continuous variables.
RESULTS

There were 40 patients with RA (26 RA-MDA; 14 RA-HAD), 40 patients in OA group, and 30 patients in FM group, as well as the control group that was made of 30 subjects of good health (CO group) who had no significant age difference in comparison to chronic pain groups (CV < 30) (Table 1). The average pain intensity values determined using VAS scales were statistically significantly higher in patients with FM than patients with RA and patients with degenerative disorders (Table 1).

Average depression score assessed by BDI was in the CO group 7.41 ± 0.84, in the RA MDA group 16.39 ± 12.65, RA HDA 19.13 ± 10.25, OA group-12.72 ± 8.4, FM group 18.18 ± 12.61 (Table 2). There was statistically significant difference of depression scores between all 3 groups and the control group (p < 0.001) (Table 2), and a statistically significant difference of the depression scores between FM, RA-HDA, RA-MDA and OA group (p < 0.05) (Table 2).

Average state anxiety score assessed by STAI-S test was 41.63 ± 7.83 in the CO group, 52.25 ± 5.66 in RA-MDA group, 55.17 ± 5.01 in RA-HDA group, 53.12 ± 6.94 in OA group, and 54.68 ± 6.34 in the FM group. Statistically significant difference in state anxiety scores were found between all three groups and the control group (p < 0.001) (Table 2). However, no statistically significant difference in state anxiety scores were detected between the groups of patients with chronic pain (Table 2).

Average general anxiety score by STAI-T test was 40.73 ± 8.01 in CO group, 49.06 ± 6.86 in RA-MDA group, 50.04 ± 6.84 in RA-HDA group, 49.15 ± 6.24 in OA group, 49.32 ± 6.57 in the FM group. Statistically significant difference of general anxiety scores was found between the control group and all three groups of patients with chronic pain (p ≤ 0.001) (Table 2).

The results of the STAI-S test differ in patients with RA grouped against DAS 28 disease activity (RA-MDA, DAS 28 ≥3.2 < 5.1; RA-HAD, DAS28>5.1), and no differences in BDI, STAI-T, WMS in relation to activity of the disease in patients with RA were found (Table 2).

There was a statistically significant difference in memory coefficients using the Wechsler Memory Scale between RA patients (RA-MDA-125.11 ± 14.18, RA-HDA 124.08 ± 13.03, OA group 108.95 ± 19.05, FM 123.75 ± 15.39) and healthy controls (136.37 ± 6.06) (RA vs. CO p < 0.05; FM vs. CO p < 0.05), (OA vs. CO p<0.001). The statistically significant lower memory values were present in OA group comparing with RA and FM group (p < 0.001).
DISCUSSION

Our results showed the highest depression score (BDI) and current and general anxiety score (STAI-S / STAI-T) in patients with rheumatoid arthritis (RA-HDA), and the lowest BDI score in patients with OA.

Patients with RA have a high prevalence of psychiatric comorbidities, which aligns with our findings. The lifetime prevalence of depression is estimated to be 41–66%, and for anxiety disorders is up to 70% [14, 15, 16].

By examining the differences in the degree of anxiety and depression of patients with RA and the control group, a statistically significant difference was established in the coefficients of depression among people with RA (BDI, RA-MDA-16.39 ± 12.65, RA-HAD-19.13 ± 10.25) and control group (6.93 ± 4.49) (p < 0.001), as well as in instantaneous scores (STAI-S) and general anxiety (STAI-T) (p < 0.001), which is in accordance with the literature data [17, 18].

Ozcetin and colleagues compared patients with RA, fibromyalgia and knee osteoarthritis in regards to anxiety and depression, and found the highest average BDI score in FM patients and the lowest in patients with OA knee, the lowest values of anxiety in FM, and the highest in RA [19].

Fibromyalgia often coexists with RA, which we can see in our results. Of the 30 patients with a positive test for FM, 25 (83.33%) already have a diagnosis of RA. These results are confirmed by the research of Frederick Wolf and his associates, which indicate a significant prevalence of FM and FM associate findings in patients with RA [20].

We established statistically significantly higher scores for anxiety and depression as well as the lower values of memory coefficients in people with FM compared to the control group of healthy subjects, which was found in previous studies [21, 22]. Cognitive impairment was found in patients with fibromyalgia compared with healthy controls, and the level of emotional disorders (depression and anxiety) may explain the heterogeneity of studies [23]. Additionally, data from the literature indicates that most patients with FM who have anxiety and depression also have poor quality of life and do not have adequate social support [24].

Our study did not establish a statistically significant difference in the psychological status of patients (depression, current and general anxiety of patients), patient memory level and intensity of pain in patients with positive FM test results in comparison to patients with rheumatic diseases who do not meet the criteria for FM. On the contrary, findings of Katz and associates found that in patients with FM there are more incidences of memory impairment
(70.2–24.6%), mental confusion (56.1–12.3%) and speech difficulty (40.4–3.5%), compared to patients with rheumatic diseases who do not meet the criteria for FM [24].

Our results also showed statistically significantly lower values of memory coefficients in patients with chronic pain (RA vs. CO p < 0.05), (OA vs. CO p < 0.001), (FM vs. CO p < 0.05) compared to the control group. The previous study on cognitive impairment in patients with RA compared to healthy subjects indicates a higher incidence of the presence of memory problems in patients with RA [25]. Furthermore, Roldán-Tapia and colleagues have shown that patients with RA and FM developed substantial cognitive impairments, which could not be easily explained by the pathology of this chronic disease [26].

Our results have shown that patients with OA had statistically significantly lower memory values than patients with RA and FM. The association between memory loss and OA, is not fully explored. OA and joint pain were clearly linked with memory loss. The sleep and mood disorders could be associated with memory loss [27].

Pain has an immense impact on functional capacity and quality of life in patients with knee OA. The focus of the assessment should not be solely on the afflicted organ, but rather, importance should be given to functional disorders (physical, emotional, social) which patients may experience because of their illness [28].

The link between FM and depressive disorders could be the similarity of symptoms, like sleep problems and fatigue and shared biological and psychological mechanisms [29].

It is likely that depression in patients with RA is not only a consequence of the distress and disability caused by RA, but also contributed to by immunological changes. Targeting immunological pathways can, therefore, be used to lessen the mental burden in addition to treating rheumatoid arthritis. Regardless of immunological intervention, multidisciplinary approach including the psychiatrist and psychologist support is important in successful disease management [30]. Chronic pain is responsible for making patients more susceptible to mood disorders that can further deteriorate the perception, intensity, and duration of nociception, thereby making treatment and diagnosis more challenging [31]. Studies have shown that a genetic predisposition to chronic pain is linked to increased risk of depression [32].

CONCLUSION

Our study established a significant difference in the psychological status of patients (depression, anxiety) and the level of memory in patients with chronic pain (RA, OA, FM).
compared to the control group. Patients with FM had more intense pain compared to patients with OA and RA. Patients with OA had significantly lower memory coefficient values, as well as significantly lower average BDI values compared to patients with RA and FM. These results should be incorporated into the treatment approaches of such chronic and debilitating conditions. Longitudinal studies are required to confirm the cross-sectional findings.

Conflict of interest: None declared.
REFERENCES

Table 1. Demographic characteristics and pain among groups

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>CO</th>
<th>RA Medium DA</th>
<th>RA High DA</th>
<th>OA</th>
<th>FM</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td></td>
<td>30</td>
<td>26</td>
<td>14</td>
<td>40</td>
</tr>
<tr>
<td>Sex (n, %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>3 (10)</td>
<td>7 (26.92)</td>
<td>4 (28.57)</td>
<td>14 (35)</td>
<td>3 (10)</td>
</tr>
<tr>
<td>F</td>
<td>27 (90)</td>
<td>19 (73.08)</td>
<td>10 (71.42)</td>
<td>26 (65)</td>
<td>27 (90)</td>
</tr>
<tr>
<td>Years (X ± SD)</td>
<td></td>
<td>48.3 ± 6.42</td>
<td>47.81 ± 7.53</td>
<td>48.47 ± 5.90</td>
<td>59 ± 10.31</td>
</tr>
<tr>
<td>Pain (X ± SD)</td>
<td>Without pain</td>
<td>53.19 ± 22.01</td>
<td>58.54 ± 19.25</td>
<td>52.10 ± 18.79</td>
<td>*66.07 ±22.05</td>
</tr>
</tbody>
</table>

X – mean value; SD – standard deviation; CO – control group; RA – rheumatoid arthritis; DA – disease activity; OA – osteoarthritis; FM – fibromyalgia;

*statistically significant (p < 0.05)
Table 2. Results of psychological tests in patients with chronic pain compared to the control group

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CO</th>
<th>RA-MDA</th>
<th>RA-HDA</th>
<th>OA</th>
<th>FM</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDI (X ± SD)</td>
<td>6.93 ± 4.49</td>
<td>16.39 ± 12.65*</td>
<td>19.13 ± 10.25*</td>
<td>12.72 ± 8.4</td>
<td>18.18 ± 12.61*</td>
</tr>
<tr>
<td>STAI-S (X ± SD)</td>
<td>41.63 ± 7.83</td>
<td>52.25 ± 5.66</td>
<td>55.17 ± 5.01*</td>
<td>53.12 ± 6.94</td>
<td>54.68 ± 6.34</td>
</tr>
<tr>
<td>STAI-T(X ± SD)</td>
<td>40.73 ± 8.01</td>
<td>49.06 ± 6.86</td>
<td>50.04 ± 6.84</td>
<td>49.15 ± 6.24</td>
<td>49.32 ± 6.57</td>
</tr>
<tr>
<td>WMS (X ± SD)</td>
<td>136.37 ± 6.07</td>
<td>125.11 ± 14.18*</td>
<td>124.08 ± 13.03*</td>
<td>108.95 ± 19.05**</td>
<td>123.75 ± 15.39*</td>
</tr>
</tbody>
</table>

X – mean value; SD – standard deviation; CO – control group; DA – disease activity; RA – rheumatoid arthritis; MDA – medium disease activity; HDA – high disease activity; OA – osteoarthritis; FM – fibromyalgia; BDI – Beck’s Depression Inventory; STAI-S – Spielberger Trait Anxiety Inventory State; STAI-T – Spielberger Trait Anxiety Inventory Traité; WMS – Wechsler Memory Scale;

*statistically significant (p < 0.05);
**highly statistically significant (p < 0.001)